

Once your paper is accepted ...

You convinced the Program Committee of the high technical quality of your work.

©ISSCC

Next: convince the audience (~3700) of the quality of your work.

Typical outline and contents

Before you begin writing the presentation, ask yourself: What problem does my paper solve ? What results do I want to communicate ? How does my work improve on previously published work ? What are the key results ?

Contactless RFID transponders

- · State-of-the-art examples:
 - Car keys
 - Animal identification
 - Subway, bus tickets
 - Turnpikes
- Future smart labels or "electronic barcodes"
 - · libraries, supermarket
 - drug identification, luggage, kiwi's, tennis balls, flowers, ... E. Cantatore, et al, paper 15.2, ISSCC06
- Crucial : ultra low cost and high volume
 - © 2006 IEEE International Solid-State Circuits Conference © 2006 IEEE

Explaining your approach ...

- This should focus on the main contribution:
 - □Show a <u>figure or diagram</u> to show your approach.
 - □Preferably, show <u>circuit schematics</u>
 - Explain clearly and concisely how the circuit works and what is new about it.

```
©ISSCC
```


Comparison with SiGe					
	Receiver in [6]	This Work			
Noise Figure	5–6.7 dB	6.9-8.3 dB			
Voltage Gain	38-40 dB	26-31.5 dB			
1-dB Compression Point	−36 dBm	−25.5 dBm			
LO Leakage to Input	NA	−47 dBm			
Image Rejection ratio	30 dB	44.5 dB			
I/Q Mismatch	1 dB/4 [°]	1.6 dB/6.5			
LO Phase Noise @ 1–MHz Offset	−90 dBc/Hz	−95 dBc/Hz			
Power Dissipation	450 mW *	80 mW			
Supply Voltage	2.7 V	1.8 V			
Technology	200-GHz BiCMOS	90-nm CMOS			

[6] Floyd et al, ISSCC 06.

© 2007 IEEE International Solid-State Circuits Conference © 2007 IEEE

Benchmarking					
	Frequency	Code length	Rectifier		
This paper	13.56MHz	6b and 64b	lateral		
Baude et al., DRC 2004	1.2MHz	8b	none		
Rotzoll et al., MRS 2005	13.56 MHz	none	lateral		
Steudel et al., Nature Mat. 2005	50MHz	none	vertical		
	I	1	1		
©ISSCC E. Cantatore, et al, paper 15.2, ISSCC06 © 2006 IEEE International Solid-State Circuits Conference © 2006 IEE					

Use of color

- Background: should be white
- Use black text
- Use of color:
 - □ to highlight parts of the text
 - □ for graphs and illustrations
- Use deep, bright colors: red, blue, green and orange (preferably in bold)

46

48

Do not use pastel colors: yellow (=yellow), pink, light blue, etc.

Overview

Background of the ISSCC:
What makes ISSCC unique
Quality of papers and presentations
Importance of a good presentation
Key aspects of a successful presentation:
Contents
Visuals
Actual delivery of the paper
Summary

Tips for a good presentation

49

- Prepare the talk carefully:
 - □ Write down the key points you like to say, slide by slide.
 - □ Rehearse many times, until you don't need the text.
 - □Use keywords to remind you what to say.
 - \Box Do not read your text during the presentation.
 - Have the text ready in case you need it (depends on your experience and how comfortable you are).

©ISSCC

Acknowledgements for insightful suggestions

Willy Sansen

Overview

Background of the ISSCC:

□ What makes ISSCC unique

□ Quality of papers and presentations

- Chorng-Kuang (CK) Wang
- Jinyong (Andy) Chung
- Laura Fujino
- Ken C. Smith

©ISSCC

