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2.1 Introduction EX 108 21

It is a well-known premise in engineering that the conception of a complex construction without a prior
understanding of the underlying building blocks is a sure road to failure. This surely holds for digital
circuit design as well. The basic building blocks in this engineering domain are the silicon semiconductor
devices, more specifically the diodes, and the MOS and bipolar transistors.

Giving the reader the necessary knowledge and understanding of these devices is the prime motivation
for this chapter. It is not our intention to present an in-depth discussion (we assume that the reader has
some prior familiarity with electronic devices). The goal is rather to refresh the memory, to introduce
some notational conventions, and to highlight a number of properties and parameters that are
particularly important in the design of digital gates. We further identify the fundamental differences
between bipolar and MOS transistors that helps to explain the differences in the topology of digital
circuits manufactured in those technologies.

Another important function of this chapter is the introduction of the device models. Taking all the
physical aspects of each device into account when designing complex digital circuits leads to an
unnecessary complexity that quickly becomes intractable. Such an approach is similar to considering the
molecular structure of concrete when constructing a bridge. To deal with this issue, an abstraction of
the device behavior called a model is typically employed. A range of models can be conceived for each
device presenting a trade off between accuracy and complexity. A simple first-order model is useful for
manual analysis. It has limited accuracy but helps us to understand the operation of the circuit and its
dominant parameters. When more accurate results are needed, complex, second- or higher-order
models are employed in conjunction with computer-aided simulation. In this chapter, we present both
first-order models for manual analysis as well as higher-order models for simulation for each device of
interest.
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* Designers tend to take the device parameters offered in the models for granted. They should be EX 108 21
aware, however, that these are only nominal values, and that the actual parameter values vary o -
with operating temperature, over manufacturing runs, or even over a single wafer. To highlight
this issue, a short discussion on process variations and their impact its included in the chapter.

* Since this text focuses on the design aspect of digital integrated circuits, a mere presentation
of an analytical model of a device is not sufficient. Turning a conceived circuit into an actual
implementation also requires a knowledge of the manufacturing process and its constraints.
The interface between the design and processing world, is captured as a set of design rules that
act as prescriptions for preparing the masks used in the fabrication process of integrated
circuits. The design rules for a representative IC process are introduced in Appendix A to this
chapter. A detailed de_s_c_r_ipfcig_r_m__ijgjabr_i_ca‘gigngrggggs_eg_i_s,_beyond}hg\scpp‘e‘ oj&hisltextbook.
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* The pn-junction diode is the simplest of the semiconductor devices. Figure 2. la shows a cross-section o
a typical pn-junction. It consists of two homogeneous regions of p- and n-type material, separated by a
region of transition from one type of doping to another, which is assumed thin. Such a device is called a
step or abrupt junction. The p-type material is doped with acceptor impurities (such as boron), which
results in the presence of holes as the dominant or majority carriers. Similarly, the doping of silicon
with, donor impurities (such as phosphorus or arsenic) creates an n-type material, where electrons are
the majority carriers. Aluminum contacts provide access to the p- and n-terminals of the device. The
circuit symbol of the diode, as used in schematic diagrams, is introduced in Figure 2.1c.
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