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* The concept of digital data manipulation has made a dramatic impact on our society. One
has long grown accustomed to the idea of digital computers. Evolving steadily from
mainframe and minicomputers, personal and laptop computers have proliferated into
daily life. More significant, however, is a continuous trend towards digital solutions in all
other areas of electronics. Instrumentation was one of the first noncomputing domains
where the potential benefits of digital data manipulation over analog processing were
recognized, Other areas such as control were soon to follow. Only recently have we
witnessed the conversion of telecommunications and consumer electronics towards the
digital format. Increasingly, telephone data is transmitted and processed digitally over
both wired and wireless networks. The compact disk has revolutionized the audio world,
and digital video is following in its footsteps. AL FU R B TREE, /55 STHRET

ANZENTHAHIN. REEDITH(60%EMETELLY)

CORARDITEELTXAMIIERTEFI DR GHAOX) v XFLREITIFIEREIC
HIELEFADD, CNBIERDFXFAYT STV IR - ASZARPERMARARETSRBLTZEL

2022/6/6 © Renji Mikami — Mikami Consulting / Meiji University 2019 10



EX_107_21

m Il STE-fo7-101
noducion /2 CEEE (RBESD) TV]| RABTIERE

2 =PmR{E AEIR INTRODUCTION|  Chapter 1

| \EET3

1.1 A Historical Perspective| FE5E
_ The concept of digital data manipulhtion has made a drarhatig’impact on o smiamnﬂ
=138l | haslong grown agcustomed to the idea of digital computers\Evolving s y from main-
ulife d into daily Ilfe

L frame and minicgmputers, persnnal nd laptop computers ha

ne of the first noncomputing domains where the
ipulation over analog processing were recognized.
follow. Only recently have we witnessed the con-
IV 58 |version of teldcommunications and ‘consumer electronics towards the digital format.
Increasingly, telephone data is nanwi@ia.ud_nmcesaed digitally over both wired and
witeless networks. The compact disk has rev ed the Hﬂﬂlﬂ world, and digital video
is|following in its footsteps. iE'ﬁiﬁ i=ZE

2022/6/6 © Renji Mikami — Mikami Consulting / Meiji University 2019 11




_ . : e \ EX_107_21
Introduction 2/2 32558 s cas conesrnny. STE10H10
Slide 09
* The idea of implementing computational engines using an encoded data format is by no
means an idea of our times. In the early nineteenth century, Babbage envisioned
largescale mechanical computing devices, called Difference Engines [Swade93]. Although
these engines use the decimal number system rather than the binary representation now
common in modern electronics, the underlying concepts are very similar. The Analytical
Engine, developed in 1834, was perceived as a general-purpose computing machine, with
features strikingly close to modern computers. Besides executing the basic repertoire of
operations (addition, subtraction, multiplication, and division) in arbitrary sequences, the
machine operated in a two-cycle sequence, called "store" and "mill" (execute), similar to
current computers. It even used pipelining to speed up the execution of the addition
operation! Unfortunately, the complexity and the cost of the designs made the concept
impractical. For instance, the design of Difference Engine | (part of which is shown in
Figure |. 1) required 25,000 mechanical parts at a total cost of L 17,470 (in 1834!).

Figure 1.1 Working part of Babbage's Difference Engine | (1832), the first known
automatic calculator (from [Swade93], courtesy of the Science Museum of London).
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* The electrical solution turned out to be more cost effective. Early digital electronics systems were based on

Section 1.1 A Historical Perspective CORBIFSNTED BB TIEESALY, EX_107_21
Slide 11

magnetically controlled switches (or relays). They were mainly used in the implementation of very simple logic
networks. Examples of such are train safety systems, where they are still being used at present. The age of digital
electronic computing only started in full with the introduction of the vacuum tube. While originally used almost
exclusively for analog processing, it was realized early on that the vacuum tube was useful for digital computations as
well. Soon complete computers were realized. The era of the vacuum tube based computer culminated in the design of
machines such as the ENIAC (intended for computing artillery firing tables) and the UNIVAC | (the first successful
commercial computer). To get an idea about integration density, the ENIAC was 80 feet long, 8.5 feet high and several
feet wide and incorporated 18,000 vacuum tubes. It became rapidly clear, however, that this design technology had
reached its limits. Reliability problems and excessive power consumption made the implementation of larger engines
economically and practically infeasible. ECTHWNAALEE L. COETUIST STRETRATEEL)

All changed with the invention of the transistor at Bell Telephone Laboratories in 1947 [Bardeen48], followed by the
introduction of the bipolar transistor by Schockley in 1949 [Schockley49]. It took till 1956 before this led to the first
bipolar digital logic gate, introduced by Harris [Harris56], and even more time before this translated into a set of
integrated-circuit commercial logic gates, called the Fairchild Micrologic. family [Norman60]. The first truly successful IC
logic family, TTL (Transistor-Transistor Logic) was pioneered in 1962 [Beeson62]. Other logic families were devised with
higher performance in mind. Examples of these are the current switching circuits that produced the first
subnanosecond digital gates and culminated in the ECL (Emitter-Coupled Logic) family. [Masaki74], which is discussed in
more detail in this textbook. TTL had the advantage, however, of offering a higher integration density and was the basis
of the first integrated circuit revolution. In fact, the manufacturing of TTL components is what spear-headed the first
large semiconductor companies such as Fairchild, National, and Texas Instruments. TR BIECIEES AL

The family was so successful that it composed the largest fraction of the digital semiconductor market until the 1980s.
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» Ultimately, bipolar digital logic lost the battle for hegemony in the digital design world for exactly the reasons that
haunted the vacuum tube approach: the large power consumption per gate puts an upper limit on the number of
gates that can be reliably integrated on a single die, package, housing, or box. Although attempts were made to
develop high integration density, low-power bipolar families (such as 12L—Integrated Injection Logic [Hart72]), the
torch was gradually passed to the MOS digital integrated circuit approach.

* The basic principle behind the MOSFET transistor (originally called IGFET) was proposed in a patent by J. Lilienfeld
(Canada) as early as 1925, and, independently, by O. Heil in England in 1935. Insufficient knowledge of the materials
and gate stability problems, however, delayed the practical usability of the device for a long time. Once these were
solved, MOS digital integrated circuits started to take off in full in the early 1970s. Remarkably, the first MOS logic
gates introduced were of the CMOS variety [Wanlass63], and this trend continued till the late 1960s. The complexity
of the manufacturing process ZCEROR—,

* An intriguing overview of the evolution of digital integrated circuits can be found in [Murphy93]. (Most of the data in
this overview has been extracted from this reference). It is accompanied by some of the historically ground-breaking
publications in the domain of digital IC’s.

4 STE-101-103

» delayed the full exploitation of these devices for two more decades. Instead, the first practical MOS integrated circuits
were implemented in PMOS-only logic and were used in applications such as calculators. The second age of the
digital integrated circuit revolution was inaugurated with the introduction of the first microprocessors by Intel in 1972
(the 4004) and 1974 (the 8080) [Shima74]. These processors were implemented in NMOS-only logic, that has the
advantage of higher speed over the PMOS logic. Simultaneously, MOS technology enabled the realization of the first
high-density semiconductor memories. For instance, the first 4Kbit MOS memory was introduced in 1970 [Hoff70].



TiE EX_107_21

Ultimately, bipolar digital logic lost the batile“ofshegemony 1n the digital design
world for exactly the reasons that haunted the vacuum tube approach: the large power con-
SH B5 55 /7 |sumption/per|gate puts an upper limit on the number of gates that can be reliably integrated STE-101-102
—__ on asingle die, package, housing, or box. Although attempts were made to develop high
JcW&ED | integration density, low-power bipolar families (such as PL—Integrated Injection Logic
. orch was gradually passed to the MOS digital integrated circuit approach.
The hﬂgpmmpl: behind the MOSFET transistor (originally called IGFET) was
proposed i patent by J. Lilienfeld (Canada) as early as 1925, and, independent]
Heil in England in 1935. Insufficient knowledge of the materials and gate stability pml:-- :
R lems, however, delayed
= ved the practical usabﬂl
55T were solved, MOS digital integra
Remarkably, the first MOS
and this trend continued i

S TO1 R
! Ar intriguing overvie ~evolution of digital integrated circuits can be .
of the data in this overview has been extracted from this reference). It is accompanied by some of the historically
ground-bregking publications in the domain of digital IC's.

.- T2 T STC-101-103
4 =R | [IGEM (vravth) | nrrRobucTiON | Chapter 1 ]
B NEEAY Eﬁi

applications such as

inaugurated with
[Shlma?4]
only logic, that has the advantage of higher speed over thq PMOS logic. Situl
MOS technology enabled the Tealization of the first high{density semiconduc
ries. For instance, the first 4Kbit MOS memory was intr ged in 1970 [Hoff7()).

2022/6/6 © Renji Mikami — Mikami Consulting / Meiji University 2019 17

[}
1[5




STE-101-103
Section 1.1 A Historical Perspective EX_107_21

Slide 15
* These events were at the start of a truly astounding evolution towards ever higher integration

densities and speed performances, a revolution that is still in full swing right now. The road to the
current levels of integration has not been without hindrances, however. In the late 1970s, NMOS-only
logic started to suffer from the same plague that made high-density bipolar logic unattractive or
infeasible: power consumption. This realization, combined with progress in manufacturing technology,
finally tilted the balance towards the CMOS technology, and this is where we still are today.
Interestingly enough, power consumption concerns are rapidly becoming dominant in CMOS design as
well, and this time there does not seem to be a new technology around the corner to alleviate the
problem.

» Although the large majority of the current integrated circuits are implemented in the MOS technology,
other technologies come into play when very high performance is at stake. An example of this is the
BiCMOS technology that combines bipolar and MQOS devices on the same die. BICMOS is effectively
used in high-speed memories and gate arrays. When even higher performance is necessary, other
technologies emerge besides the already mentioned bipolar silicon ECL family—Gallium-Arsenide,
Silicon-Germanium and even superconducting technologies. While these circuits only fill in a small
niche in the overall digital integrated circuit design scene, it is worth examining some of the issues
emerging in the design of these circuits. With the continuing increase in performance of digital MOS
circuits, design problems currently encountered in these high-speed technologies might come to
haunt CMOS as well in the foreseeable future.
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* Integration density and performance of integrated circuits have gone through an
astounding revolution in the last couple of decades. In the 1960s, Gordon Moore,
then with Fairchild Corporation and later cofounder of Intel, predicted that the
number of transistors that can be integrated on a single die would grow
exponentially with time. This prediction, later called Moore's law, has proven to be
amazingly visionary. Its validity is best illustrated with the aid of a set of graphs.
Figure 1.2 plots the integration density of both logic 1Cs and memory as a function
of time. As can be observed, integration complexity doubles approximately every 1
to 2 years. As a result, memory density has increased by more than a thousandfold
since 1970.

* Anintriguing case study is offered by the microprocessor. From its inception in the
early seventies, the microprocessor has grown in performance and complexity at a
steady and predictable pace. The number of transistors and the clock frequency for
a number of landmark designs are collected in Figure 1.3. The million-transistor/chip
barrier was crossed in the late eighties. Clock frequencies double every three years
and have reached into the 100 MHz range.

EX_107 21
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® Figure 1.3 Evolution of microprocessor transistor count and clock frequency (from [Sasaki911). Slide 20

- into the 100 MHz range. AN €ven more important observation is that, as of now,
these trends have not shown any signs of a slow-down.

* |t should be no surprise to the reader that this revolution has had a
profound impact on how digital circuits are designed. Early designs were
frilly hand-crafted. Every transistor was laid out and optimized
individually and carefully fitted into its environment. This is adequately
illustrated in Figure 1.4a, which shows the design of the Intel 4004
microprocessor. This approach is, obviously, not appropriate when more
than a million devices have to be created and assembled. With the rapid
evolution of the design technology, time-to-market is one of the crucial

factors in the ultimate success of a component.

Figure 1.4 Comparing the design methodologies of the Intel 4004 (1971) and PentiumTM (1994)
microprocessors (reprinted with permission from Intel).
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Figure 1.3 Evolution of microprocessor transistor count and clock frequency (from [Sasakid1]). ::{/Fi
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Figure 1.4 Comparing the design methodologies of the Intel 4004 (1971) and Pentium™ (1994)
microprocessors (reprinted with permission from Intel).
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* Designers have, therefore, increasingly adhered to rigid design methodologies and strategies that are
more amenable to design automation. The impact of this approach is apparent from the layout of one of
the later Intel microprocessors, the Pentium, shown in Figure 1.4b. Instead of the individualized approach
of the earlier designs, a circuit is constructed in a hierarchical way: a processor is a collection of modules,
each of which consists of a number of cells on its own. Cells are reused as much as possible to reduce the
design effort and to enhance the chances for a first-time-right implementation. The fact that this
hierarchical approach is at all possible is the key ingredient for the success of digital circuit design and
also explains why, for instance very large scale analog design has never caught on.

 The obvious next question is why such an approach is feasible in the digital world and not (or to a lesser
degree) in analog designs. The crucial concept here, and the most important one in dealing with the
complexity issue, is abstraction. At each design level, the internal details of a complex module can be
abstracted away and replaced by a black box view or model. This model contains virtually all the
information needed to deal with the block at the next level of hierarchy. For instance, once a designer has
implemented a multiplier module, its performance can be defined very accurately and can be captured in a
model. The performance of this multiplier is in general only marginally influenced by the way it is utilized
in a larger system. For all purposes, it can hence be considered a black box with known characteristics. As
there exists no compelling need for the system designer to look inside this box, design complexity is
substantially reduced. The impact of this divide and conquer approach is dramatic. Instead of having to
deal with a myriad of elements, the designer has to consider only a handful of components, each of which
are characterized in performance and cost by a small number of parameters.
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* This is analogous to a software designer using a library of software routines such as input/output drivers.
Someone writing a large program does not bother to look inside those library routines. The only thing he
cares about is the intended result of calling one of those modules. Imagine what writing software programs
would be like if one had to fetch every bit individually from the disk and ensure its correctness instead of
relying on handy "file open" and "get string" operators.

* Typically used abstraction levels in digital circuit design are, in order of increasing abstraction, the device,
circuit, gate, functional module (e.g., adder) and system levels (e.g., processor), as illustrated in Figure 1.5. A
semiconductor device is an entity with a very complex behavior. No circuit designer will ever seriously
consider the solid-state physics equations governing the behavior of the device when designing a digital gate.
Instead he will use a simplified model that adequately describes the input-output behavior of the transistor.
For instance, an AND gate is adequately described by its Boolean expression (Z = A.B), its bounding box, the
position of the input and output terminals, and the delay between the inputs and the output.

* This design philosophy has been the enabler for the emergence of elaborate computer-aided design (CAD)
frameworks for digital integrated circuits; without it the current design complexity would not have been
achievable. Design tools include simulation at the various complexity levels, design verification, layout
generation, and design synthesis, An overview of these tools and design methodologies is given in Chapter
11 of this textbook.

* Furthermore, to avoid the redesign and reverification of frequently used cells such as basic gates and
arithmetic and memory modules, designers most often resort to dell libraries.
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e These libraries contain not only the layouts, but also provide complete documentation and
characterization of the behavior of the cells. The use of cell libraries is, for instance, apparent in the layout
of the Pentium. processor (Figure 1.4b). The integer and floating point unit, just to name a few, contain
large sections designed using the so-called standard cell approach. In this approach, logic gates are placed
in rows of cells of equal height and interconnected using routing Channels. The layout of such a block can
be generated automatically given that a library of cells is available.

* The preceding analysis demonstrates that design automation and modular design practices have
effectively addressed some of the complexity issues incurred in contemporary digital design. This leads to
the following pertinent question. If design automation solves all our design problems, why should we be
concerned with digital circuit design at all? Will the next-generation digital designer ever have to worry
about transistors or parasitics, or is the smallest design entity he will ever consider the gate and the
module?

 The truth is that the reality is more complex, and various reasons exist as to why an insight into digital
circuits and their intricacies will still be an important asset for a long time to come.

* o Fjrst of all, someone still has to design and implement the module libraries. Semiconductor technologies
continue to advance from year to year, as demonstrated in Figure 1.2, where the minimum MOS device
dimensions are plotted as a function of time.
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e Figure 1.2, where the minimum MOS device dimensions are plotted as a function of time. Until one has
developed a fool-proof approach towards "porting" a cell from one technology to another, each change in
technology—which happens approximately every two years—requires a redesign of the library.

* Creating an adequate model of a cell or module requires an in-depth understanding of its internal
operation. For instance, to identify the dominant performance parameters of a given design, one has to
recognize the critical timing path first.

* The library-based approach works fine when the design constraints (speed, cost or power) are not
stringent. This is the case for a large number of application-specific designs, where the main goal is to
provide a more integrated system solution, and performance requirements are easily within the
capabilities of the technology.

* Unfortunately for a large number of other products such as microprocessors, success hinges on high
performance, and designers therefore tend to push technology to its limits. At that point, the hierarchical
approach tends to become somewhat less attractive. To resort to our previous analogy to software
methodologies, a programmer tends to "customize" software routines when execution speed is crucial;
compilers—or design tools—are not yet to the level of what human sweat or ingenuity can deliver.
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* Even more important is the observation that the abstraction-based approach is only correct to a certain
degree. The performance of, for instance, an adder can -be substantially influenced by the way it is connected
to its environment. The interconnection wires themselves contribute to delay as they introduce parasitic
capacitances, resistances and even inductances. The impact of the interconnect parasitics is bound to
increase in the years to come with the scaling of the technology.

* Scaling tends to emphasize some other deficiencies of the abstraction-based model. Some design entities
tend to be global or external (to resort anew to the software analogy). Examples of global factors are the clock
signals, used for synchronization in a digital design, and the supply lines. Increasing the size of a digital design
hasa profound effect on these global signals. For instance, connecting more cells to a sup ply line can cause
a voltage drop over the wire, which, in its turn, can slow down all the connected cells. Issues such as clock
distribution, circuit synchronization, and supply-voltage distribution are becoming more and more critical.
Coping with them requires a profound understanding of the intricacies of digital circuit design.

* Another impact of technology evolution is that new design issues and constraints tend to emerge over time. A
typical example of this is the periodical reemergence of power dissipation as a constraining factor, as was
already illustrated in the historical overview. Another example is the changing ratio between device and
interconnect parasitics. To cope with these unforeseen factors, one must at least be able to model and
analyze their impact, requiring once again a profound insight into circuit topology and behavior.

* Finally, when things can go wrong, they do. A fabricated circuit does not always exhibit the exact waveforms
one might expect from advance simulations. Deviations can be caused by variations in the fabrication process
parameters, or by the inductance of the package, or by a badly modeled clock signal.
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* Troubleshooting a design requires circuit expertise.

* For all the above reasons, it is my belief that an in-depth knowledge of digital circuit design
technigues and approaches is an essential asset for a digital-system designer. Even though she
might not have to deal with the details of the circuit on a daily basis, the under standing will
help her to cope with unexpected circumstances and to determine the dominant effects when
analyzing a design.

* Example 1.1 Clocks Defy Hierarchy

* To illustrate some of the issues raised above, let us examine the impact of deficiencies in one of
the most important global signals in a design, the clock. The function of the clock signal in a
digital design is to order the multitude of events happening in the circuit. This task can be
compared to the function of a traffic light that determines which cars are allowed to move. It
also makes sure that all operations are completed before the next one starts—a traffic light
should be green long enough to allow a car or a pedestrian to cross the road. Under ideal.
circumstances, the clock signal periodic step waveform with abrupt transitions between the
low and the high values (Figure 1.6a).
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For all the above reasons, it is my belief that an in-depth knowledge of digital circuit
design techniques and approaches is an essential asset for a digital-system designer. Even
though she might not have to deal with the details of the circuit on a daily basis, the under-
standing will help her to cope with unexpected circumstances and to determine the domi-

nant effects when analyzing a design.

Example 1.1 Clocks Defy Hierarchy

To illustrate some of the issues raised above, let us examine the impact of deficiencies in one
of the most important global signals in a design, the clock. The function of the clock signal in
a digital design is to order the multitude of events happening in the circuit. This task can be
compared to the function of a traffic light that determines which cars are allowed to move. It
2lso makes sure that all operations are completed before the next one starts—a traffic light
should be green long enough to allow a car or a pedestrian to cross the road. Under ideal cir-
cumstances, the clock signal is a periodic step waveform with abrupt transitions between the
low and the high values (Figure 1.6a).
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