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Introduction

After the in-depth study of the design and optimization of the basic digital gates, it is time
to test our acquired skills on a somewhat larger scale and put them in a more system~ori-'
ented perspective.

We will apply the techniques of the previous chapters to design a number of circuits
often used. in the datapaths of microprocessors and signal processors. More specifically,
we discuss the design of a representative set of modules such as adders, multipliers, and
shifters. The speed of these elements often dominates the overall system performance.
Hence, a careful design optimization is required. It rapidly becomes obvious that the
design task is not straightforward. For each module, there exist multiple equivalent logic
and circuit topologies, each of which has its own benefits and disadvantages in terms of
area, speed, or power.

- Although far from complete, the analysis presented helps focus on the essential
trade-offs that must be made in the course of the digital design process. You will see that
‘optimization at only one design level—for instance, through transistor sizing only—Ileads
to inferior designs. A global picture is of crucial importance. A good digital designer
focuses his attention on the gates, circuits, or transistors that have the largest impact on his
goal function. The noncritical parts of the circuit can be developed routinely. We will
develop first-order performance models that foster understanding of the fundamental
mechanics of a module.The discussion also clarifies which computer aids can help to sim-
plify and automate this phase of the design process.

Before analyzing the design of the arithmetic modules, a short discussion of the role
of the datapath in the digital-processor picture is useful. This not only helps highlight the
specific design requirements for the datapath, but also puts the rest of this book in perspec-
tive. Other processor modules, such as the input/output, controller, and memory modules,
have different requirements and are discussed in subsequent chapters. After an analysis of
the area-time trade-offs in the design of adders, multipliers, and shifters, we will use the
same structures to illustrate some of the power-minimization approaches introduced in
Chapter 4, The chapter concludes with a short perspective on datapath design and its trade-
offs. Appendix E, following this chapter, discusses a number of the layout approaéhes
used in high-speed datapaths.

[EX-209-1(1) |

Datapaths in Digital Processor Architectures

An analysis of the components of a simple processor puts the different classes of digital
circuits and their usage in perspective. Such a processor could be the brain of a personal
computer (PC) or the heart of a compact disc player. A typical block diagram is shown in
Figure 7.1 and is composed of a number of building blocks that occur in one form or
another in almost every digital processor.

» The datapath is the core of the processor; it is where all computations are per-
formed. The other blocks in the processor are support units that store either the
results produced by the datapath or help to determine what will happen in the next
cycle. A typical datapath consists of an interconnection of basic combinational func-
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MEMORY  fe===

DATAPATH e Figure 7.1 Composition of a generic
digital processor. The arrows represent

the possible interconnections.

tions, such as logic (AND, OR, EXOR) or arithmetic operators (addition, multipli-
cation, comparison, shift). Intermediate results are stored in registers. The design of
the arithmetic operators is the topic of this chapter.

[EX-209-1(2) | ‘ ‘
s The control module determines what actions happen in the processor at any given
point in time. A controller can be viewed as a finite state machine (FSM). It consists
of registers and logic, and is hence a sequential circuit. The logic can be imple-
mented in different ways——either as an interconnection of basic logic gates, often
“called random logic, or in a more structured fashion using programmable logic
arrays (PLAs) and instruction memories.

+ The memory module serves as centralized data storage. A broad range of different
memory classes exist. The main difference between those classes is in the way data
can be accessed, such as read-only versus read-write, sequential versus random access,
or single-ported versus multiported access. Another way of differentiating between
memories is related to their data-retention capabilities. Dynamic memory structures
must be refreshed periodically to keep their data, while static memories keep their data
as long as the power source is turned on. Finally, memory structures such as flash
memories conserve the stored data even when the supply voltage is removed. A single
processor might combine different memory classes. For instance, random access
memory can be used to store data and read-only memory to store instructions.

« The interconnect and input-output circuitry—the interconnect network joins the
different processor modules to one another as well as to the outside world. Unfortu-
nately, the wires composing the interconnect network, are nonideal and present a
capacitive, resistive, and inductive load to the driving circuitry. With growing die-
sizes, the length of the interconnect wires tends to grow, resulting in increasing val-
ues for these parasitics. '

Datapaths are often arranged in a bit-sliced organization, as shown in Figure 7.2.
Instead of operating on single-bit digital signals, the data in a processor is arranged in a
word-based fashion. For instance, a 32-bit processor operates on data words that are 32
bits wide. This is reflected in the organization of the datapath. Since the same operation
has to be performed on each bit of the data word, the datapath consists. of 32 identical
slices, each of them operating on a single bit. Hence the word bit-sliced. The datapath
designer can concentrate on the design of a single slice that is repeated 32 times.
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Figure 7.2 Bit-sliced datapath organization.

The Adder |

Addition is probably the most commonly used arithmetic operation. Often it is also the
speed-limiting element. Therefore, careful optimization of the adder is of utmost impor-
tance. This optimization can proceed either at the logic or circuit level. Typical logic-level
optimizations try to rearrange the Boolean equations so that a faster or smaller circuit is
obtained. An example of such a logic optimization is the carry look-ahead adder dis-
cussed later in the chapter. Circuit optimizations, on the other hand, manipulate transistor
sizes and circuit topology to optimize the speed. Before considering both optimization
processes, we provide a short summary of the basic definitions of an adder circuit (as
defined in any book on logic design [e.g., Davio83]).

[EX-209-2(1) |
7.3.1 The Blnary Adder: Deflmtlons

The truth table of a binary full adder is given in Table 7.1. A and B are the adder inputs, C;
is the carry input, S is the sum output, and C, is the carry output. The Boolean expressions
for § and C,, are given in Eq. (7.1).

Table 7.1 Truth table for full adder.

A B C; S C, Carry status
0 0 0 0 0 delete

0 0 1 L 0. delete

0 1 0 1 0 . propagate

0 1 1 0 1 propagate

1 0 0 1 0 propagate

1 0 I 0 1 propagate

1 1 0 0 1 generate

1 1 l 1 1 generate
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S=A®B®C,
= ABC;+ ABC;+ABC;+ ABC, (7.1)

It is often useful from an implementation perspective to define S and Cy as functions -
of some intermediate signals G (Generate), D (Delete), and P (Propagate). G=1 (D =1)
ensures that a carry bit will be generated (deleted) at C, independent of C;, while P =1
guarantees that an incoming carry will propagate to Co. Expressions for these signals can
be derived from inspection of the truth table. '

[EX-209-2(2) | G = AB

D =AB (7.2).
P=A+B(orP = A®RB)
S and C, can be rewritten as functions of P and G (or D)
C,(G,P) = G+ PC;

. (7.3)
S(G,P) = P®C,

Notice that G and P are only functions of A and B and are not dependent upon C;. In a sim-
jlar way, we can also derive expressions for S(D,P) and C,(D,P).

An N-bit adder can be constructed by cascading N full-adder circuits in series, con-
necting C,,,_; to C; for k=1 to N-1, and the first carry-in C; 5 to 0 (Figure 7.3). This con-
figuration is called a ripple-carry adder since the carry bit “ripples” from one stage to the
other. The delay through the circuit depends upon the number of logic stages that must be
traversed and is a function of the applied input signals. For some input signals, no rippling
effect occurs at all, while for others the carry has to ripple all the way from the least-
significant (Isb) to the most-significant bit (msb). The propagation delay of such a structure
(also called the critical path) is defined as the worst-case delay over all possible input
patierns.

IEX-210-1 / EX-210-2 |

Figure 7.3 Four-bit ripple-carry adder: topology.

In the case of the ripple-carry adder, the worst-case delay happens when a carry gen-
erated at the least significant bit position propagates all the way to the most significant bit.
The delay is then proportional to the number of bits in the input words N and is approxi-
mated by Eq. (7.4).

Ladder & (N - l)tcarry tlsum (74)
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where t.,,,, and t..m €qual the propagation delays from C; to C, and §, respectively.’
Example 7.1 Propagation Delay of Ripple-Carry Adder

' Derive the values of A, and B, (k = 0...N — 1) so that the worst-case delay is obtained for the
. ripple-carry adder.
[EX-210-3(1) The worst-case condition requires that a carry be generated at the Isb position. Since

the input carry of the first full adder Cy is always 0, this means that both Ay and B, must
equal 1. All the other stages must be in propagate mode. Hence, eitherA; or B; must be high,
but not both at the same time. Finally, we would like to physically measure the delay as a tran-
sition on the msb sum-bit. Assuming an initial value of O for Sy_;, we must arrange a 0 — 1
transition. This is achieved by setting both Ay, and By, to O (or 1), which yields a high sum-
bit given the incoming carry of 1.

For example, the following values for A and B trigger the worst-case delay for an 8-bit
addition. The rightmost bit represents the msb in this binary representation. Observe that this
is only one of the many worst-case patterns. Derive some others as an exercise.

A: 0000001; B: 01111111

Two important conclusions can be drawn from Eq. (7.4).

« The propagation delay of the ripple-carry adder is linearly propoftional to N. This
property becomes increasingly important when designing adders for the wide data-
paths (N = 16...128) that are desirable in current and future computers.

« When designing the full adder cell for a fast ripple-carry adder, it is far more impor-
tant to optimize £, than z,,,,, since the latter has only a minor influence on the total

value of 7,4,

Before starting an in-depth discussion on the circuit design of full adder cells, an
additional logic property of the full adder is worth mentioning.

Inverting all inputs to a full adder results in inverted values for all outputs.

This property, also called the inverting property, is expressed in Eq. (7.5) and will be
extremely useful when optimizing the speed of the r1pple~carry addc=r It states that the cir-
cuits of Flgure 7.4 are identical.

Figure 7.4 Inverting property of
the full adder. The circles in the
schematics represent inverters.

! Bq. (7.4) assumes that for the 1sb the delay from the input signals Ay (or By) to C,, is equal to 2.,
Although not completely correct, this approximation is acceptable and helps to simplify the expression.
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[EX-210-3(2) |

S(A,B,C) = S(4,B,C,)

- Y (7.5)
C,(A, B, C) = C,(A,B,C)

7.3.2 The Full Adder: Circuit Design Considerations

Static Adder Circuit

One way to implement the full adder circuit is to take the logic equations of Eq. (7.1) and

translate them directly into complementary CMOS circuitry. Some logic manipulations

can help to reduce the transistor count. For instance, it is advantageous to share some logic

between the sum- and carry-generation subcircuits, as long as this does not slow down the

carry generation, which is the most critical part, as stated previously. An example of such a

reorganized equation set is given in Eq. (7.6). The equivalence with the original equation
set is easily verified.

C, = AB+BC;+AC,
_ — (7.6)
S = ABC;+C,(A+B+C)

The corresponding adder design, using complementary static CMOS, is shown in
Figure 7.5 and requires 28 transistors. Besides consuming a large area, this circuit is
also slow:

"« Long chains of series PMOS transistors are present in both carry- and sum genera-
tion circuits.

« The intrinsic load capacitance of the C, signal is large and consists of two diffusion
and six gate capacitances plus the wiring capacitance. |

VDD

b-A

. TT
I g B
T T
o w
<
8

Figure 7.5 Complementary static CMOS implementation of full adder.
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* The carry-generation circuit requires two inverting stages per bit. As ‘mentioned
above, minimizing the carry-path delay is the prime goal of the designer of high-
speed adder circuits.

* The sum generation requires one extra logic stage, but this is not that important,
since this factor appears only once in the propagation delay Eq. (7.4).

Although slow, the circuit includes some smart design tricks. Notice that in the first
gate of the carry-generation circuit, the NMOS and PMOS transistors connected to C; are
placed as close as possible to the output of the gate. This is a direct application of a circuit-
optimization technique discussed in Section 4.2—transistors on the critical path should be
placed as close as possible to the output of the gate. For instance, in stage k of the adder,
signals A, and B, are available and stable long before C;, (= C,,_() arrives after rippling

~ though the previous stages. In this way the capacitances of the internal nodes in the tran-

sistor chain are precharged or discharged in advance. On arrival of C;;, only the capaci-
tance of node X has to be (dis)charged. Putting the C;, transistors closer to Vp, and GND
would require not only the (dis)charging of the capacnance of node X but also of the inter-
nal capacitances.

The speed of this circuit can now be improved gradually by using some of the adder
properties discussed in the previous section. First of all, the number of inverting stages in -
the carry path can be reduced by exploiting the inverting property—inverting all the inputs
of a full adder cell also inverts all the outputs. This rule allows us to eliminate an inverting
gate in a carry chain, as demonstrated in Figure 7.6. The only disadvantage is that this
design needs different cells for the even and odd slices of the adder chain.

Even cell Odd cell

Sy

Figure 7.6 Inverter elimination in carry path. FA’ stands for a full adder FA without the inverter in the
carry path.

“Improved Adder Design

An improved adder circuit, also called the symmetrical, or mirror adder, is shown in Fig-
ure 7.7 [Weste85]. Its operation is based on Eq. (7.3). The carry generation circuitry is
worth analyzing. First, the carry-inverting gate is eliminated; as dictated by the previous
section. Secondly, the PDN and PUN networks of the gate are not dual. Instead, they form
a smart implementation of the propagate/generate/delete function: when either D or G is
high, C, is set to V,,, or GND, respectively. When the conditions for a Propagate are valid
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Figure 7.7 Mirror adder—circuit schematics.

(‘Eor P is 1), the incoming carry is propagated (in inverted format) to C,. This results in a
considerable reduction in both area and speed. The analysis of the output cn'cmtry is left to
the reader. Some other observations are worth considering.

This full adder cell requires only 24 transistors.

The NMOS and PMOS chains are completely symmetrical. This guarantees identical
rising and falling transitions if the NMOS and PMOS devices are properly sized. A
maximum of two series transistors can be observed in the carry-generation circuitry.

When laying out the cell, the most critical issue is the minimization of the capaci-
tance at node C,. The reduction of the diffusion capacitances is particularly
important.

The capacitance at node C, is composed of four diffusion capacitances, two internal
gate capacitances, and six gate capacitances in the connecting adder cell, or a total
of £12 gate capacitances assuming that the diffusion capacitance is approximately
equal to a gate capacitance (see Chapter 3). This is identical to the fully complemen-
tary implementation of Figure 7.6. :

The transistors wconnected to C; are placed closest to the output of the gate.

Only the transistors in the carry stage have to be optlmlzed for speed. All tran31stors
in the sum stage can be minimum-size.

Example 7.2 Static Adder Design

Consider a slight modification of the static rlpple -carry cell of Figure 7.5. A dlfferenual
approach is used; that is, every full adder cell generates both C, and C,. The crucial gates of
the cell are depicted in Figure 7.8. It is left as an exercise for the reader to fill in the rest of the
cell (use transmission-gate EXORs as much as possible). The transistor sizes for our 1.2 im
CMOS process are annotated on the schematics (in A). Observe how a progressive sizing is
used. Explain why the PMOS transistor connected to P is smaller than the one connected to-
C,, in the first gate.
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L

Fligure 7.8 Carry-generation circuitry of full-adder cell.

From simulations, we can derive a delay model in the style of Eq. (7.4). -
ladd = -[A,B—)co + (N - z)tci—-)ca tiliss

with 4 g_,., = 1.63 nsec, ty; o, = 0.32 nsec, and #_,_,, = 1 nsec, for a rise time of 2 nsec at the
~ inputs. This yields the following expression for £,

taaa = 1.99 + 032N nsec

A 32-bit addiﬁon thus takes 12.23 nsec.

Dynamic Adder Design

Most of the adder circuits discussed above can also be designed using dynamic circuit
styles such as DOMINO CMOS or np-CMOS. An implementation of an np-CMOS adder
is shown in Figure 7.9. The basic cell requires only 17 transistors, ignoring the extra invert-
ers required for the input or output signals. The alternating even and odd carry stages are
realized using NMOS and PMOS networks respectively. The sum-generation networks are
also implemented in alternating device types. While it is a direct implementation of Eq.
(7.3), the reduced capacitance of the dynamic circuitry results in a substantial speed-up

over the static implementation. The load capacitance on the carry bit approximately equals
seven equivalent gate capacitances—three diffusion and four gate capacitances.

Example 7.3 Dynamic Adder Design |

A layout of the dynamic adder design of Figure 7.9 is plotted in Figure 7.10. Observe the bit-
sliced organization. Close to minimum-size transistors are used virtually everywhere except
for the carfy-generation circuitry. The large devices used there (up to 48/1.2) are easily recog-
pizable in the layout. In the 1.2 pm CMOS technology, the total area per bit equals
120 pm % 31 pm, for a very small carry delay of 200 psec/bit. This delay number ignores the
precharge time, which is at least of a similar length.

In addition, the dynamic approach allows for the conception of alternative circuit
diagrams that are hard to realize in a static way. An example of such a circuit is shown in
Figure 7.11. This adder is called a Manchester Carry-Chain Adder; and uses a cascade of
pass-transistors to implement the carry chain. Propagate and Generate signals are gener-
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Figure 7.9 Dynamic full adder using

Carry path the np CMOS logic style.
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'Figure 7.10 Layout of dynamic full adder using the np-CMOS logic style (from [Kieinfelder91}).

ated in the traditional way using, for instance, pass-transistor logic. During the precharge
phase (¢ = 0), all intermediate nodes of the pass-transistor chain are precharged to V.
During the evaluation phase, the A, node is discharged when there is an incoming carry
and the Propagate signal P, is high, or when the Generate signal for stage k (G) is high.
The capacitance per node on the carry chain is very small and equals only four diffu- -
sion capacitances. Unfortunately, the distributed RC-nature of the carry chain results in a.
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‘propagation delay that is quadratic in the number of bits N. To avoid this, it is necessary to
insert signal-buffering inverters. The optimum number of stages per buffer depends on the
buffer delay ¢, and the resistance and capacitance of the pass-transistors, as was dis-
cussed in Section 4.2. An additional speed-up is obtained by a careful sizing of the transis-
tors in the pass-transistor chain. During a discharge of the complete chain, transistor M,
has to sink the largest amount of current, or Iy > Ijy > ... > Iy Therefore, it is advanta-
geous to size the transistors progressively. The same is true for the discharge transistors
connected to the Generate signals and the Evaluate transistors. Short propagation
delays/bit can be obtained using this technique. For instance, for our 1.2 um technology,
we measured a delay of 192 psec per bit. This delay is very sensitive to any parasitic
capacitances at the precharged nodes.

V
!J I.J |_| ” . |_| Total Area:
225 um x 48.6 um
¢+ dF——E chl -
: R Py Py Py Py
L L L L L |
Jﬂ:l_s—l' " ToH _]M?'l_zz'l" Mo M T [\>O._.
R A A L
= 4 35 ]3 25 -2 —
o | | | | s
S H_'H ' '
-

Figure 7.11 Manchester carry-chain adder (5-bit section). The annotated numbers indicate the
relative transistor sizes. A unit-size transistor measures (6/1.2).

Problem 7.1 Manchester Carry Chain

" The carry chain uses only NMOS transistors in the pass-transistor network (instead of full
transmission gates). Discuss why this is an acceptable approach in this configuration.

Example 7.4 Transistor Sizing in the Manchester Carry Chain

" The worst-case delay of the carry chain of the adder in Figure 7.11 can be modeled by the lin-
earized RC network of Figure 7.12. The linearized on-resistance of the minimum-size transis-
tor is assumed to equal 20 k€2, and the linearized diffusion capacitance contributed by each
minimum-size device is set to 5 fF. The diffusion capacitance at each node in the chain is the
sumn of the capacitive contributions of two pass-transistors, a pull-down and a precharge device.

The propagation delay of this RC network is expressed by the following equation:

= OE;QZC(ER) (7.%)

i=1 j=1

where N is the number of nodes in the network and C; the capacitance of node i to ground. The
Jast term in the equation (the resistive sum) represents the total resistance between nodei and
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Figure 7.12 Equivalent network to determine propagation delay of carry chain.

the source node (node 1). This expression, called the Elmore delay, is discussed further in
Chapter 8. The delay of the RC network of Figure 7.12 can now be determined

fp = 0.69(‘311{1 + CZ(RI + Rz) + C3(Rl + R2 + R3) + C4(R1 + RZ + R3 + R4) +
Cs(Ry + Ry + Ry + Ry + Rg) + Ce(Ry + Ry + Ry + Ry + Rs + Rg))
Since R, occurs six times in the expression, it makes sense to minimize this contribu-
tion by making the first transistor larger than the other ones, or to use progressive scaling.

First consider the case where all transistors are minimum-size. The capacitance at each
node is estimated to equal 20 fF, and all resistances are set to 20 k(2

t,=0.69C(6R + SR+ 4R + 3R + 2R + R) = 0.69 X 21 X RC = 5.8 nsec

Assume now that the stages are made progressively larger, starting from a minimum-
size transistor at the output. The (W/L) of the next-to-last transistor is scaled by a factor k (>

' 1), which means that its resistance is divided by k, while its associated capacitances are

approximately increased by a factor k. The following expressions hold
C;=kCyyy; R =Ry, /k
Cs = 20 fF; Ry =20 kQ
This yields the following expression for ip
t,=0.69CR(L + 2k + 3k* + 4K + 5K* + 6°)/k°

Figure 7.13 plots the propagation delay (normalized with respect to 0.69RC) and the
area of the transistor chain (normatized with respect to a minimum-size transistor) as a func-
tion of k. Observe that the area increases dramatically with &, which effectively excludes the
use of large scaling factors. The delay starts from 21RC for the nonscaled version and
decreases sharply for k between 1 and 1.5. For instance, a k-factor of 1.5 reduces the delay by
40% (to 0.69 x 12 x RC) at the expense of a 3.5-fold increase in area. A smaller scaling factor
(e.g., k = 1.2) does not effect the area much (only 1.65 times larger), but still yields a reason-
able speed-up of 20%: Notice that the minimum possible delay for very large values of k
equals six time-constants. This means that a linear dependence on the number of RC-stages is

~ achieved in contrast fo the quadratic dependence of the nonscaled implementation.

WARNING: Be aware that the above analysis represents only a first-order model. Exten-

sive simulation on extracted layouts is necessary to fine-tune the transistor sizes.
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Figure 7.13 Speed and area of Manchester carry chain as a function of scaling factor k.

Pipelined Adder

One way to break the dependency between the addition time and the number of bits is to
employ the pipelining technique intioduced in Chapter 6. Pipeline registers are inserted on
the carry path of the adder so that the subsequent sum bits are produced in different time
intervals. The pipelining reduces the critical path and the clock period of the adder to a
single carry- and sum-generation stage. An N-bit addition now takes N clock cycles, but a
result is produced every clock cycle because N additions are performed simultaneously. -
This extreme usage of pipelining is called bit-level pipelining and has been used effec-
tively in signal-processing applications.

An example of a pipelined adder based on the NORA-CMOS dynamic circuit
approach is shown in Figure 7.14. The even and odd bits are implemented as ¢-blocks and
$-blocks, respectively. One stage is evaluating, while the next one is in the precharging

" mode. Observe also how within a single stage, the np-CMOS approach is used to cascade
gates. Further pipelining can be achieved by inserting an extra register between the carry-
and sum-generating circuitry, reducing the critical path to a single carry generation. This
incurs an extra cost, because all inputs to the sum-generating circuitry (4; B;, and C;) must
be delayed as well by inserting extra registers.

7.3.3 The Binary Adder: Logic Design Considerations

The ripple-carry adder is only practical for the implementation of additions with a rela-
tively small word length. Fast computers such as mainframes or supercomputers require
additions with a word length up to 128 bits. The linear dependence of the adder speed on
the number of bits makes the usage of ripple adders rather impractical. Therefore, logic
optimizations are necessary, resulting in adders with z, < O(N). A number of those are dis-
cussed briefly below. We concentrate on the circuit de31gn implications, since most of
these structures are well-known from traditional logic design.
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Figure 7.14 Pipelined adder in NORA-
Sum, - CMOS (showing only bit j and bit i + 1}.

The Carry-Bypass Adder

Consider the four-bit adder block of Flgure 7. 15a and suppose that the values of A, and B;,
(k = 0...3) are such that all Propagate signals P, (k = 0...3) are high. An incoming carry
C;o= 1 propagates under those conditions through the complete adder chain and causes an
outgoing carry C, 3= 1. In other words,

if (PyPyPyPy = 1) then C, 5 = C;

7.8
else either DELETE or GENERATE occurred. 78

This information can be used to speed up the operation of the adder as shown in Figure
7.15b. When BP= PP ,P,P;= 1, the incoming carry is forwarded immediately to the next
block through the bypass transistor M,,. Hence the name carry-bypass adder [Turrini89]. If
this is not the case, the carry is obtained via the normal route.

Figure 7.16 shows the possible carry-propagation paths when the full adder circuit is
implemented in Manchester-carry style. This picture demonstrates how the bypass speeds
up addition: either the carry propagates through the bypass path, or a carry is generated
somewhere in the chain. In both cases, the delay is smaller than the normal ripple configu-
ration. The area overhead incurred by adding the bypass path is small and typically ranges
between 10 and 20%.

Let us now compute the delay of an N-bit adder. At first we assume that the total
adder is divided in (N/M) equal-length bypass stages, each of which contains M bits. An
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DESIGNING MEMORY AND ARRAY STRUCTURES Chapter 10

- 10.3.3 Read-Write Memories (RAM)

Providing a memory cell with roughly equal read and write performance requires a more
complex cell structure. While the contents of the ROM and NVRWM memories is
ingrained in the cell topology or programmed into the device characteristics, storage in
RAM memories is based on either positive feedback or capacitive charge, similar to the
ideas introduced in Chapter 6. These circuits would be perfectly suitable as R/W memory
cells but tend to consume too much area. In this section, we introduce a number of simpli-
fications that trade off area for either performance or electrical reliability. They are labeled

as either SRAMs or DRAMSs depending upon the storage concept used.

Static Random-Access Memory (SRAM)

“The generic SRAM cell is (re)introduced in Figure 10.24 and turns out to be virtually

identical to a register cell shown in Figure 6.16, deemed of limited use at that time. It
requires six transistors/bit. Access to the cell is enabled by the word line, which replaces
the clock and controls the two pass-‘transistofs M and M. In contrast to the ROM cells,
two bit lines transferring both the stored signal and its inverse are required. Although pro-
viding both polarities is not a necessity, doing so improves the noise margins during both
read and write operations, as will become apparent in the subsequent analysis.

WL
sl
.:r_ﬂfra :]1?1-1__'45:[4'
~u]H Y

BL ’_| BL

L - " Figure 10.24 Six-transistor CMOS
- SRAM cell. _ |

Problem 10.5 CMOS SRAM Cell

Docs the SRAM cell presented in Figure 10.24 consume stand-by power? Explain, Draw an
equivalent pseudo-NMOS implementation. How about the stand-by power in that case?

<0peratibn of SRAM cell.  To understand the operation of the memory cell, let us con-
sider the write and read operations in sequence. While doing so, we also derive the transis-

" tor-sizing constraints.
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Example 10.6 CMOS SRAM Write Operation

In this example, we derive the device constraints necessary to ensure a correct write operation.
Assume that a 1 is stored in the cell (or Q = 1). A 0 is written in the cell by setting BL to 0 and
BL to 1, which is identical to applying a reset pulse. This causes the fiip-flop to change state if
the devices are sized properly. : _
During the initiation of a write, the schematic of the SRAM cell can be simplified to the
model of Figure 10.25 It is reasonable to assume that the gates of transistors M, and M, stay at |
" Vpp and GND respectively as-long as the switching has not commenced. While this condition
is violated once the flip-flop starts toggling, the simplified model is more than accurate for
hand-analysis purposes. It is sufficient that node QO can be pulled below the switching thresh-
old of the cross-coupled inverter, which is assumed to be located at Vj,/2, to ensure that the
flip-flop will toggle. Node O must be raised above Vpp/2.

WL
- Voo
M
== OI N
—— T=0 Tav L8
eI, L— Q=1
wlE
. ' Voo
BL = BL = 0
| Figure 10.25 Simplified model of
—_ 7 CMOS SRAM cell during write (Q = 1).

The conditions under which this occurs can be derived by considering the dc current
equations at the switching threshold point. This is similar to the analysis of Example 6.1.

14 VY v V2 '
b Vo0 V) 22 = 722 = by s V=V 52 -2 (10.1)
and -
k, Vaop Vv 2 1% V.2
"_ZME(—%Q - (VTn(for Vsg = —3“2 )D =k, Ml(( Vop— |V1‘nl)%llJ - —gg) (10.2)

The first equation simply expresses that k, s should be equal to (or larger than) kp,ira: When
the cross-coupled inverter is implemented using minimum-size devices, it is acceptable to use
a minimum device for the pass-transistor as well. A wider device can help increase the noise
margin (as already shown in Figure 6.14). ‘ . :
Evaluating Eq. (10.2) for the 1.2 pm CMOS technology and Vpp = 5V yields

(WIL),, s 2 10 (W/L)y 101 (103)

Pulling up node Q requires a large NMOS pass-transistor, since pulling up a node with a satu-
rated NMOS device is not very effective. This is detrimental in two ways: (1) it increases the
size of the cell, and (2) it presents a larger capacitive load to the bit line, which hampers the
performance. -



