下のほうにコピペ用のプレイン・テキスト部があります。

最下行の data_re[i] 関数と data_imm[i] 関数は、main文で定義され、ADコンバータの値が、入力されます。

#include "math.h"              //mathematical library

 // FFT parameters
#define N_points 64             //number of points
#define exponent log(64)/log(2)     //log2(N_points); for N_points=64 -> exponent=6

 // FFT variables
double mod[N_points]={0};         //arrays
double data_re[N_points]={0};
double data_imm[N_points]={0};

 // FFT function
short FFT(int dir,long m,double *x,double *y)
{
 // dir: forward (=1) o inverse (!=1) transform;
 // m exponent;


 long n,i,i1,j,k,i2,l,l1,l2;
 double c1,c2,tx,ty,t1,t2,u1,u2,z;

 /* Calculate the number of points */
 n = 1;
 for (i=0;i<m;i++)
  n *= 2;

  /* Do the bit reversal */
 i2 = n >> 1;
 j = 0;
 for (i=0;i<n-1;i++) {
  if (i < j) {
   tx = x[i];
   ty = y[i];
   x[i] = x[j];
   y[i] = y[j];
   x[j] = tx;
   y[j] = ty;
  }

  k = i2;
  while (k <= j) {
   j -= k;
   k >>= 1;
   }
 j += k;
 }

 /* Compute the FFT */
 c1 = -1.0;
 c2 = 0.0;
 l2 = 1;
 for (l=0;l<m;l++) {
 l1 = l2;
 l2 <<= 1;
 u1 = 1.0;
 u2 = 0.0;
 for (j=0;j<l1;j++) {
   for (i=j;i<n;i+=l2) {
   i1 = i + l1;
   t1 = u1 * x[i1] - u2 * y[i1];
   t2 = u1 * y[i1] + u2 * x[i1];
   x[i1] = x[i] - t1;
   y[i1] = y[i] - t2;
   x[i] += t1;
   y[i] += t2;
  }
 z = u1 * c1 - u2 * c2;
 u2 = u1 * c2 + u2 * c1;
 u1 = z;
 }
 c2 = sqrt((1.0 - c1) / 2.0);
 if (dir == 1)
 c2 = -c2;
 c1 = sqrt((1.0 + c1) / 2.0);
 }

 /* Scaling factor for forward transform */
 if (dir == 1) {
   for (i=0;i<n;i++) {
    x[i] /= n;
    y[i] /= n;
  }
 }

 for(i=0;i<N_points;i++)
 /* Absolute value */
 mod[i]=sqrt((data_re[i]*data_re[i])+(data_imm[i]*data_imm[i]))/N_points;
}

-------------------------------------------------

以下は、コピペ用のプレイン・テキストです。fft.h として、

main.c から#includeで読み込みます。<p>タグはとってください。

--------------------------------------------------

#include "math.h" //mathematical library

// FFT parameters
#define N_points 64 //number of points
#define exponent log(64)/log(2) //log2(N_points); for N_points=64 -> exponent=6

// FFT variables
double mod[N_points]={0}; //arrays
double data_re[N_points]={0};
double data_imm[N_points]={0};

// FFT function
short FFT(int dir,long m,double *x,double *y)
{
// dir: forward (=1) o inverse (!=1) transform;
// m exponent;

long n,i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;

/* Calculate the number of points */
n = 1;
for (i=0;i<m;i++)
n *= 2;

/* Do the bit reversal */
i2 = n >> 1;
j = 0;
for (i=0;i<n-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}

/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<n;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}

/* Scaling factor for forward transform */
if (dir == 1) {
for (i=0;i<n;i++) {
x[i] /= n;
y[i] /= n;
}
}

for(i=0;i<N_points;i++)
/* Absolute value */
mod[i]=sqrt((data_re[i]*data_re[i])+(data_imm[i]*data_imm[i]))/N_points;
}