B3課題作成例

CSA_B3_F1.pptx 12/26/2022 By Renji Mikami

CSA_B3_F1

1次元から2次元へ拡張

19_50(C)

1次元フーリエ変換:振動、波など

19_50(C)

Day 1 Review 波(一次元)のフーリエ変換

• 時間関数(信号)の解析は、波形での分析

周波数関数

• 周波数関数では、信号周波数と振幅で定量的解析が容易

特定周波数とその振幅での定量的分析

・ 地震波、長周期振動、機械系の動作(故障)状態のスペクトル解析

© Renji Mikami – Mikami Consulting / Meiji University 2019

DFT/FFT Expansion

- DFTの行列の形
- ・後述のX(t), Y(t)の次元拡張

信号の値の変化を画像の輝度(明るさ)変化に 置き換えることができる。

CSA_B3_F1

レナさん

入力行列次元の拡張:画像2次元(白黒輝度)

次元を拡張し、時間変化を画像(2次元)のxy値に拡張して置き換えします。(n次元に拡張可)

ここでは、白黒の輝度変化で考えるが、RGB 3信号は直交しているので、 3次元で計算すれば、カラーの画像を扱うことができる。

FFT(DFT)変換と解析

19_60(C)

TEAM15C2

• 簡単のためにグレースケール化後(白黒輝度2次元)にFFT

結果は、離散フーリエ変換(DFT)でも高速フーリエ変換(FFT)でも変わりません 乗算の計算量は、DFTが2ⁿに対してFFTではnlognに削減できます

Reference : 2017~2015 Meiji University Computer Science A - Hardware Design Practice

http://mikamir.wiki.fc2.com/wiki/%E3%83%81%E3%83%BC%E3%83%A015C2

低輝度変化データ抽出

19_60(C)

輝度変化の大きい(中央部分)部分の値が少ないことに着目、この値を0に置き換えて逆FFTして元画像を再現する
 A.成分の少ない高振動成分を削減(中央部)

Reference : 2017~2015 Meiji University Computer Science A - Hardware Design Practice

輝度変化率の相違によるFFT解析比較

19_60(C)

Reference : 2017~2015 Meiji University Computer Science A - Hardware Design Practice

課題発表 Wiki サイトに ベースになる15C2 チームの研究発表があります。

CodeFormer 復元

• 人の顔に特化した画像復元 AI アルゴリズムを使って粗画像 🎭 データから高解像の顔データを推定復元してみる

Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022) S-Lab, Nanyang Technological University

生成画像

© Renji Mikami – Mikami Consulting / Meiji University 2019

動画(時間軸追加 3次元)へのFFT応用

チーム 21A1
 りしーム読み込み
 前のフレームとの差分を計算
 差分画像についてフーリエ変換
 差分画像のスペクトルに対してフィルタ処理
 逆フーリエ変換による補間用差分画像の生成
 補間画像を含めたフレームの書き込み

CSA B3 F1

openCVというフレームワークを主に使用している。 また、フレームには簡易化のため、グレースケール変換を行っている。

チーム21E2にさらに発展 された課題研究があります。 21A1の成果ではちらつきが 発生していましたが、窓関数 をかけることにより、ちらつき を除去しています。 同時にソースコードの改善を 行っています。

音響応用 チーム21A3 短時間フーリエ変換によるボーカル抽出の精度の向上 スペ クトログラム応用 (python) 進化させてください

元の音源との波形の比較(上が出力した音声、下が元の音源)

音響応用 チーム21A4 音声処理(ローパスフィルタ処理と環境音除去)

CSA_B3_F1

AIへの応用 1

- 通常のAIの学習アプローチ
 - 時間軸信号(関数)や画像(直交2元関数)
 - 音声や画像をそのままデータとして使う
- - 時間軸信号(時間関数)をスペクトル(周波数関数)に変換し てからAIに学習させ、声のスペクトル学習から個人を判別
 - ・課題発表 Wiki サイト チーム20D2
 - <u>http://mikamir.wiki.fc2.com/wiki/%E3%83%81%E3%83%BC%E3%83</u>
 <u>%A020D2</u>
 - 画像-直交2(次)元関数-をFFTしてから学習させる手法
 - 直交N元関数をFFTしてから学習させる手法

AIへの応用 2

- ・ 畳み込みニューラルネットワークによる音楽
 ジャンル検出
 - ・課題発表 Wiki サイト チーム21C5
 - <u>http://mikamir.wiki.fc2.com/wiki/%E3%83%81%E3%83%</u>
 <u>BC%E3%83%A021C5</u>
- ・メル周波数スペクトログラムの応用

課題発表時 RDP の使い方

- RDP (Remote Desktop Protocol) 機能を使って課題発表ができます。
- RDPとは、特定PCから他のPCにログインしてそのPCの機能を使うプロトコルです。
- 特定PCをプロジェクタに接続した教卓のPC実習とします。各自が実習で使用しているPCをログイン先の特定PCします。RDPを使うと教卓のプロジェクタ接続PCから、各自の特定PC提出を使うことができます。この機能で各自の特定PCの画面をプロジェクタに映しながら教卓PCから操作できます。
- まずは、各自の特定PCの名前を確認してください。
- PCの名前は、CDCPCDnnとなっています。(nnには数字が入ります)この名前でRDPします。
- 注:Home版のWindowsには入れません(Home版からは上位版PCに入れます。(RasPiにも入れます-RasPi側にRDPをインストールしてください。)

各自特定PCの名前の調べ方

- 左下の windows アイコン から設定を選びます。
- 設定からシステムを選択します。
- システムからバージョン情報を選択します。
- PC名の項目に cdcpcDnn (nnは数字)と記載されています

CSA B3 F1

リモートデスクトップへの接続

- 検索(拡大鏡アイコン)から"リモートデスクトップ"を検索してクリックします。
- PC名を入力して接続します。

ログイン名とパスワードを入力

- ・ ログインする特定PC用のログイン名とパスワードを入力してください。
- ネットワーク上のPC名を一覧するには、エクスプローラからネットワークを選 択してください。(オプション)

Memo

- フォローアップURL (Revised)
- <u>http://mikami.a.la9.jp/meiji/MEIJI.htm</u>

- 担当講師
- ・ 三上廉司(みかみれんじ)
- Renji_Mikami(at_mark)nifty.com
- mikami(at_mark)meiji.ac.jp (Alternative)
- http://mikami.a.la9.jp/_edu.htm

