
 
 
 

PSoC® 3 / PSoC 5 - Getting Started with DMA 
 

 

June 6, 2011 Document No. 001-52705 Rev. *D 1 

 

AN52705 
Author: Anu M D/Lakshmi Natarajan 

Associated Project: Yes  
Associated Part Family: CY8C38xx/ CY8C55xx 

Software Version: PSoC Creator™ 

Application Note Abstract  
AN52705 describes how to use Direct Memory Access (DMA) in PSoC

®
 3 and PSoC 5. It includes projects that show several 

different types of DMA configurations that you can use. 

Introduction  
The DMA controller (DMAC) in PSoC 3 and PSoC 5 can send data from a source to a destination without any action by the 
CPU. This application note gives a description how a DMAC works and the different ways that DMA can be set up.  

 Basic Concepts of DMA 

Peripheral HUB (PHUB) is a central hub in PSoC 3 and PSoC 5 devices that connects different on-chip peripherals. PHUB 
contains a DMAC that can move data between on-chip elements without any CPU intervention. 

Figure 1. Peripheral HUB 

P
H

U
B

SRAM

S
po

ke
0

32 bit

· IO interface, 

· Port Interrupt 

Control Unit (PICU), 

· External memory 

interface (EMIF)

S
po

ke
1

· PHUB local 

spoke, 

· Power 

management,

· Clock,

· Serial wire 

viewer (SWV),

· EEPROM

S
po

ke
2

32 bit

16 bit

· Delta-sigma 

ADC 

· Analog 

interface

S
po

ke
3

16 bit

· USB, 

· CAN, 

· Fixed-

function I2C, 

· Fixed-

function 

timers

S
po

ke
4

16 bit

· Digital filter 

block (DFB)

S
po

ke
5

· UDB set 0 

registers 

(including 

DSI, 

configuration,

and control 

registers), 

· UDB interface

S
po

ke
6

16 bit

32 bit

· UDB set 1 

registers 

(including 

DSI, 

configuration, 

and control 

registers)

S
po

ke
7

16 bit

Spoke 

Arbitration

CPUDMAC

 
 

 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 2 

PHUB has eight data buses that are called spokes. Each 
spoke connects to one or more peripheral blocks as 
shown in Figure 1. Spokes can have widths of either 16 
bits or 32 bits. Peripherals attached to a spoke can have 
widths of either 8 bits, 16 bits, or 32 bits..Both CPU and 
DMA get access to the peripheral data using PHUB 
spokes. 
 
The PHUB has two masters—the CPU and the DMAC. 
The CPU and the DMAC can get access to different 
spokes on the PHUB at the same time. But, if the CPU 
and DMAC try to get access to the same spoke at the 
same time, arbitration occurs.  
 

Peripherals on the same spoke can have different widths. 
The data width of a peripheral is usually less than or equal 
to the data width of the spoke to which it is attached. 
However, if a peripheral data width is greater than that of 
the spoke attached to it, PHUB will transact with the 
peripheral that is at the width of the spoke.  
 
The DMAC manages 24 DMA channels and has 128 
Transaction Descriptors (TDs). Each channel is attached 
to a TD chain, which are one or more TDs attached in a 
chained configuration. Each TD describes a transfer and 
contains information such as source address, destination 
address, transfer count, and next TD pointer. 

 

Figure 2. DMA Channel 

Source

DMA Channel

DMA Request 

Signal

Read Write

DMA 

Request 

TD Pointer

TD0
Source Destination

Transfer 

Count 
Next TD

Destination

DMA 

Done

DMA done signal -

typically tied to 

interrupt

Source Destination
Transfer 

Count 
Next TD

TD1

Each DMA channel has a separate DMA request input that activates a transaction for a particular channel. When a DMA 
transfer is required, a CPU or peripheral asserts the DMA request input of the channel. After it receives a DMA channel 
request, the DMAC gets access to the spokes attached to the source and destination registers and moves data as configured 
in channel and TD configuration registers. 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 3 

DMA Configuration 
The various parameters of a DMA transfer are configured 
using channel configuration and TD configuration registers 
as described in the following section.  

Figure 3.DMA Configuration 

      
 
Channel Configuration 
The source addresses and destination addresses in 
PSoC 3 and PSoC 5 are 32 bits wide. The upper 16 bits 
are configured in channel configuration registers and the 
lower 16 bits are configured in TD configuration registers. 
 
 Upper source address (16 bits)  

Upper 16 bits of 32-bit source address configured in 
channel configuration registers.  

 
 Upper Destination Address (16 bits) 

Upper 16 bits of 32-bit destination address configured 
in channel configuration registers 
 

 Lower Source Address (16-bit) 

Lower 16 bits of 32-bit source address configured in 
TD configuration registers 

 
 Lower Destination Address (16-bit) 

Lower 16 bits of 32-bit destination address configured 
in TD configuration registers 
 

 Burst count (1 to 127) 

Number of bytes the DMA channel must move from 
source to destination before it releases the spoke. 
The DMAC acquires the spoke for each burst data 
movement, moves (copies) the specified number of 
bytes from source to destination (configured in burst 
count parameter of channel configuration registers) 
and then releases the spoke.  It re-acquires the spoke 
during the next burst transfer.  

 
 Request Per Burst(0 or 1) 

When multiple bursts are required to finish the DMA 
data transfer, this parameter determines the nature of 
the bursts. 
0: All subsequent bursts after the first burst are 

automatically done without a separate request. (Only 
the first burst transfer must have a DMA request) 
1: All subsequent bursts after the first burst must have 

individual requests. 
 

 Initial TD 

The channel collects information from the first TD 
pointer and subsequent TD pointers and keeps it in 
the TD itself, similar to a linked list. The pointer to the 
first TD is stored in channel configuration memory and 
subsequent TD pointers are stored in TD 
configuration memory, similar to a linked list. 

 
 Preserve TD(0 or 1) 

Defines whether to use TD configuration registers or 
separate PHUB working registers to store 
intermediate TD states. 
 
0: Store the intermediate states on top of the original 

TD chain (TD configuration registers). 
1: Store the intermediate states separately in a 

working register to keep the original TD configuration. 
Typically TD configurations are preserved so that TD 
can be repeated.  
 

TD Configuration  

 
 Transfer count(0 to 4095) 

The total number of bytes to be moved from source to 
destination.  
 
For example, if you want to move 100 bytes of data 
from a 16-bit peripheral to a memory buffer, the burst 
count is set to 2 and transfer count is set to 100. 

 
 Next TD 

Points to the next TD, similar to a linked list  
 
 TD Property( Configurable from the list below) 

Increment Source Address  
Increases source address after each burst transfer. 

 
Increment Destination Address  
Increments destination address after each burst 
transfer. 

 
Swap Enable  
The PSoC 3 Keil Compiler uses big endian format to 
store 16-bit and 32-bit variables. But the PSoC 3 
peripheral registers uses little endian format. A byte 
swap on 2-byte or 4-byte words must occur to move 
data between array and peripheral registers. For this 
reason, the DMA must be configured to swap bytes 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 4 

while it moves data between peripheral registers and 
memory in PSoC 3.  
If this TD property is set, DMA swaps the data bytes 
while it moves data from source to destination.  

 
Swap Size: Used with the Swap Enable setting. 

0: Swap size is 2 bytes. Every 2 bytes are endian 
swapped during the DMA transfer. 
1: Swap size is 4 bytes. Every 4 bytes are endian 
swapped during the DMA transfer. 

 
Auto Execute Next TD  
0: The next TD in the chain will be executed only after 
the next DMA request. 
1: The next TD in the chain is automatically executed 
soon after the current TD transfer is finished. 

 
DMA completion event 
Generates a DMA ―done signal‖ after the data transfer 
is finished. This is typically used to create an interrupt 
after the transfer is finished.   

You can set the channel and TD configuration parameters 
in two ways:  

 Use the DMA wizard included in PSoC Creator. For 
more information, see Appendix B. 

 Use the APIs included in PSoC Creator. For more 
information, see Appendix C.  

 

Example 1:  Point-to-Point Transfer 
 
This ADC_DMA_DAC example shows how to use DMA to do a simple point-to-point transfer.  

The Figure 44 shows an ADC-to-DAC signal chain that uses DMA. The DMA channel moves ADC output data to DAC data 

register on each DMA request. The End of Conversion (EoC) signal from ADC is configured as a request signal for the DMA 
channel in this example. 

Figure 4. Point to Point Transfer Block Diagram 

Source – ADC 

Result Register

DMA 

Channel

ADC

EoC

Read Write

DMA 

Request 

1 Byte

Associated 

TD

Destination – DAC

DAC1Byte

TD0 Source Destination
Transfer 

Count (1)
Next TD

TD Property: None

 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 5 

Top Design 

ADC is set in 8-bit, single-ended mode to match the data format of the VDAC, which is a single-ended 8-bit voltage DAC. The 
DMA component instance is given the name DMA_ADC2DAC. To make a request for DMA transfer whenever an ADC result 
is available, the hardware request terminal of the DMA channel is enabled and connected to the ADC EoC signal. 
 

Figure 5. Top Design 

 
 

Channel Configuration 

Parameter Project Setting 

Upper Source 
Address 

HI16(CYDEV_PERIPH_BASE)/ 
HI16(ADC_DEC_OUTSAMP_PTR) 

Upper Destination 
Address 

HI16(CYDEV_PERIPH_BASE)/ 
HI16(VDAC8_DATA_PTR) 

Burst Count 1 Byte 

Request Per Burst  True (1) 

Initial TD TD0 

Preserve TD Yes(1) 

 
The upper 16 bits of the 32-bit address for both source 
and destination address is set to 
HI16(CYDEV_PERIPH_BASE).  
 
CYDEV_PERIPH_BASE‗ is defined in the header file 
cydevice.h that is created by PSoC Creator and defines 
the base address of all PSoC 3 and PSoC 5 peripherals, 
which include ADC and DAC. HI16 is a PSoC Creator 
macro that returns the upper 16 bits of the 32-bit address. 
 
You can also use HI16(ADC_DEC_OUTSAMP_PTR) as 
the upper 16 bits of the source address, where 
ADC_DEC_OUTSAMP_PTR is the address of ADC output 
register (decimator output). This register pointer is defined 
in the header file, ADC_DelSig.h, which is created by the 
ADC component. You can also use 
HI16(VDAC8_DATA_PTR) to identify the upper 16 bits of 
the destination address, where VDAC8_DATA_PTR is the 
pointer for the DAC data register defined in VDAC8.h. 
 
The DMA channel must move the one-byte ADC result 
from the ADC output register to the DAC data register 
after each DMA request. For this reason , the burst count 
is set to 1 byte and the request per burst is set to true. 
 

TD0 Configuration 

Parameter Project Setting 

Lower Source 
Address LO16(ADC_DEC_OUTSAMP_PTR) 

Lower 
Destination 
Address LO16(VDAC8_DATA_PTR) 

Transfer Count 1 byte 

TD property  None  

Next TD Loop back to same TD (TD0) 

 
In the TD, the lower 16 bits of the source address is 
configured as LO16(ADC_DEC_OUTSAMP_PTR) and the 
destination address is configured as  
LO16(VDAC8_DATA_PTR). LO16 macro returns the 
lower 16 bits of the 32-bit address.  
Because the transaction is to send one byte from ADC to 
DAC, the transfer count is also set to 1. The next TD to be 
executed is set to the same TD (looped), so that the same 
transaction is repeated on each DMA request. To keep the 
TD settings (source, destination and transfer count) and 
make the TD able to be repeated when the transaction is 
finished, the Preserve TD parameter is set to 1 (TRUE).  

Operation 

 

The EOC signal from ADC sets the DMA request for the 
channel. After it receives the request, DMA reads data 
from ADC output register and writes to the DAC data 
register. The transfer count is decreased by 1 (burst 
count) after the transfer. When the count is zero, the 
transaction is finished. Because the Preserve TD 

parameter is set to true, the original TD configuration is 
kept and reloaded. The DMA channel is ready for the next 
transaction, which is activated on the next DMA request 
signal (EoC). 
 

Related Code Examples 

DMA Peripheral Transfer in PSoC® 3 / PSoC 5 

http://www.cypress.com/?rID=38793


AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 6 

Example 2: Point-to-Array Transfer 
This 16-bit ADC data buffering example shows how use DMA to do a point-to-array transfer.  

Figure 6. Point to Array Transfer Block Diagram 

Source : ADC output 

Register
Sample 1

Sample 2

...

...

….

Destination : RAM Buffer

DMA Transaction 

complete signal

Transfer 1

Transfer ‗N
‘

  Transfer2

DMA Channel

ADC

EoC

Read Write

DMA 

Request 

Source Destination
Transfer 

Count (N)
Next TD

Increment 

Destination 

Address

2 Bytes

Associated 

TD

TD0 None

TD Property      : Increment Destination address, 

: Generate transaction complete signal

Sample 

‗N‘

 
 
As the Figure 6 shows, the DMA must move the ADC result (2 bytes) from the source ADC to the destination RAM buffer each 
time it receives a request. The RAM buffer pointer must be increased after each data movement to point to the next sample 
location. After the specific number of ADC samples is collected, the DMA must send a signal that the transaction is finished.  

 

Top Design 

DMA collects a specified number of ADC samples (N) on a switch press. The DMA channel is enabled on each switch press 
and disabled after it collects the specified number of ADC samples. A DMA Transaction Complete signal on the nrq terminal 
activates an ISR, which disables the DMA channel.  

Figure 7. Top Design 

 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 7 

The DMA component instance has the name 
DMA_ADC2Mem. The hardware request of this DMA 
channel component is set to rising edge. The hardware 
request terminal of the DMA channel is connected to the 
ADC EoC signal so that the DMA channel is requested 
whenever ADC result is available. 

Channel Configuration 

 

Parameter Project Setting 

Upper Source 
Address 

HI16(CYDEV_PERIPH_BASE)/ 
HI16(ADC_DEC_OUTSAMP_PTR) 

Upper Destination 
Address HI16(CYDEV_SRAM_BASE) 

Burst Count 2 Bytes 

Request Per Burst  True (1) 

Initial TD TD0 

Preserve TD Yes(1) 

 

The upper 16 bits of the source address is set to 
HI16(CYDEV_PERIPH_BASE).  
 
‗CYDEV_PERIPH_BASE‗ is defined in the header file 
cydevice.h that is created generated by PSoC Creator . 
This gives the 32-bit base address for all PSoC 3 and 
PSoC 5 peripherals including ADC. The HI16 macro gives 
the upper 16 bits of this 32-bit address. 
 
You can also use HI16 (ADC_DEC_OUTSAMP_PTR) as 
the upper 16 bits of the source address, where 
ADC_DEC_OUTSAMP_PTR is the address of the lower 
byte of the ADC output register (decimator output). The 
header file ADC_DElSig_1.h created by the ADC 
component defines this register.  
 
The upper 16 bits of RAM variables are given by the 
macro HI16(CYDEV_SRAM_BASE), where 
CYDEV_SRAM_BASE is the SRAM base address defined 
in cydevice.h. HI16 (&adc_sampleArray) will also work for 
PSoC 5 but not for PSoC 3 – Keil compiler. This is 
because the upper 16 bits of the address of RAM 
variables is zero for PSoC 3, but the Keil compiler stores 
Keil-specific information in the upper 16 bits of the variable 
address. Hence HI16 (&adc_sampleArray) returns an 
incorrect address when used with PSoC 3 – Keil compiler. 
For this reason, use HI16 (CYDEV_SRAM_BASE) to 
specify the upper 16 bits of RAM variables in PSoC 3. 
 
In this example, a 2-byte ADC result must be moved from 
ADC to memory on each DMA request. For this reason, 
the burst count is set to 2 and the request per burst is set 
to true.  
 
To keep the original TD settings (source, destination and 
transfer count) and make the TD able to be repeated when 
the transaction is finished, the Preserve TD parameter is 

set to 1 (TRUE).  
 

TD0 Configuration 

 

Parameter Project Setting 

Lower Source 
Address LO16 (ADC_DEC_OUTSAMP_PTR) 

Lower 
Destination 
Address LO16 (adc_sampleArray) 

Transfer Count 
N×2 (No. of samples × Bytes per 
sample) 

TD property  

  Increment Destination Address 
  Generate DMA done event 
  Swap Enable required for PSoC3 

Next TD None/repeat to same TD 

 
The lower 16 bits of the source and destination address 
are identified by the LO16 macro. The destination is the 
16-bit RAM array adc_sampleArray.  

The transfer count identifies the total number of bytes to 
be moved from source to destination to finish the 
transaction. This is set to ‗Number of samples × Bytes per 
Sample‘ (2N).  

The TD property (TD_INC_DST_PTR),  is set to increment 
the destination address and the RAM buffer pointer after 
each burst transfer. The TD is also defined to generate a 
transaction complete signal (DMA__TD_TERMOUT_EN) 
after the specified number of bytes is moved from ADC to 
buffer.  
 
When the 16-bit data is moved from ADC to memory in 
PSoC 3, the bytes must be swapped. This is because 
PSoC 3 peripheral registers use little endian format and 
the Keil compiler uses big endian format. For more 
information, see the KB article - Endian format in PSoC 3 
device vs PSoC 3's KEIL Compiler. The TD_SWAP_EN 
configuration makes the DMA able to swap bytes while it 
moves data from peripheral to memory. 

 
Operation: 
 

Each time a switch is pressed, ISR_Switch is activated, 
which sets the flag to enable the DMA channel 
(CyDmaChEnable). If the DMA channel is enabled, the 
EoC signal from ADC activates the DMA channel request. 

 On each DMA request, the DMA fetches 2 bytes 
(burst count) from the source - ADC output register, writes 
it to the destination RAM buffer, and increases the 
destination address by two. The transfer count is 
decreased by 2 (burst) after each burst transfer. This 
repeats until the transfer count is zero, which generates a 
transaction complete signal at the NRQ terminal of the 
DMA component, which activates the ISR_DMA_Done 
interrupt. This sets the flag to disable the DMA channel. 
The DMA channel is enabled again the next time the 
switch is pressed. Because the Preserve TD parameter is 

set to true, the TD configurations are reloaded and the TD 
is ready for the next transaction when the channel is re-
enabled. 

http://www.cypress.com/?id=4&rID=38594
http://www.cypress.com/?id=4&rID=38594


AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 8 

Related Resources 

· AN61102 - PSoC® 3 and PSoC 5 - ADC Data Buffering Using DMA 

· Code Example: 16-Bit ADC Data Buffering Using a DMA - PSoC® 3 / PSoC 5 
 

· Code Example: 8-Bit ADC Data Buffering Using a DMA - PSoC® 3 / PSoC 5 

 
Example 3: Array-to-Point Transfer 
 
This example shows how to use DMA to do an array-to-point transfer. In this example, the DAC is updated at regular intervals 
with a sequence of values that are kept in the flash array (look up table). These values create a sine wave at the DAC output. 
The DMA request comes periodically from a digital clock signal whose frequency determines the update rate of DAC. The 
update rate (DMA trigger clock) and the number of points in the sine lookup table define the frequency of the output sine wave. 

Figure 8. Array to Point Transfer 

Source : Memory Look up table

Location 1

Location 2

...

...

….

        Location 

Loop back to same  TD

Transfer 1

Transfer 2

Transfer ‗N
‘ DMA 

Channel

Read Write

DMA 

Request 

Associated 

TD

Destination : DAC

DAC1 Byte

DMA Trigger  Clock

TD0 Source Destination
Transfer 

Count(N)
Next TD

Increment 

Source 

Address

‗N‘

TD Property      : Increment Source address, 

: Increment Destination address, 

Top Design 

Figure 9 shows the top design for the project. A sine lookup table with 128 points is kept in flash memory. These values are 
updated sequentially to a DAC to create a sine wave. Timer component is used to generate a clock signal to periodically 
request DMA data movement. The DMA is set to update the values on a hardware trigger signal given from terminal count of 
the timer. In this example, the frequency of the sine wave generated by the DAC is equal to the DMA trigger clock (Timer TC 
frequency) divided by number of points in the sine lookup table.  
 
 
 

http://www.cypress.com/?rID=44335
http://www.cypress.com/?rID=44108


AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 9 

Figure 9. Top Design 

 
 

 
DMA uses a single channel and one TD. The TD repeats 
itself so that the sine wave repeats. 
 
Channel Configuration 

Parameter Project Setting 

Upper Source 
Address 

-HI16(CYDEV_FLS_BASE) for 
PSoC 3 
- HI16 (&sineTable) for PSoC 5 

Upper Destination 
Address 

HI16(CYDEV_PERIPH_BASE)/ 
HI16(VDAC8_DATA_PTR) 

Burst Count 1 Byte 

Request Per Burst  True (1) 

Initial TD TD0 

Preserve TD Yes(1) 

The source for DMA transfer is the sineTable array that is 
kept in flash memory. The destination is voltage DAC. The 
HI16 (&sineTable) in PSoC 5 sets the upper 16 bits of the 
source address. In PSoC 3, HI16(&sineTable) does not 
use the correct upper 16-bit address because the Keil 
compiler keeps Keil-specific information in the upper bits 
of the array pointer. The macro HI16(CYDEV_FLS_BASE) 
is used to identify the upper 16 bits of source address for 
PSoC 3. CYDEV_FLS_BASE, which is defined in  the 
source file cydevice.h created in PSoC Creator, identifies  
the base address for the entire flash memory in PSoC 3 . 
In PSoC 5, the flash address range is ‗0x0000 0000 to 
0x0003 FFFF‘. The upper 16 bits of the entire flash 
address is not a fixed value; it is defined by the location of 
the lookup table in flash memory and is identified by 
HI16(&sineTable). 
 
Similarly, the upper 16 bits of the destination address is 
defined as HI16(VDAC8_DATA_PTR) where 
VDAC8_DATA_PTR is the pointer for the DAC data 
register that is defined in VDAC8.h.  
 

You can also use CYDEV_PERIPH_BASE, which is 
defined in the header file cydevice.h that is created by 
PSoC Creator, along with the HI16 macro to identify the 
upper 16 bits of any PSoC 3/PSoC 5 peripheral address. 
 
TD0 Configuration 

Parameter Project Setting 

Lower Source Address LO16(&sineTable) 

Lower Destination 
Address LO16(VDAC8_DATA_PTR) 

Transfer Count 

N ( No. of entries in the sine 
look up table x no. of bytes 
per entry) 

TD property    Increment Source Address 

Next TD 
Loop back to the same TD 
again 

 
In the TD, the lower 16 bits of source address and 
destination address are defined with the macro 
LO16(&sineTable) and LO16(VDAC8_DATA_PTR), where 
LO16 macro returns the lower 16 bits of the 32-bit 
addresses. 
 
For more information on this project, see the following 
code example available at www.cypress.com 
CE56171 - PSoC® 3 / PSoC 5 - Sine Wave Generator 

with DAC 

Related Videos: 
http://www.cypress.com/?rID=39390 

http://www.cypress.com/?rID=38627
http://www.cypress.com/?rID=38627
http://www.cypress.com/?rID=39390


AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 10 

Example 4: Array-to-Array Transfer 
This example project shows how to use DMA to do an array-to-array transfer. In this example, an 8-byte flash array is copied 
to a RAM array using DMA, on a CPU request. 

Figure 10. Array to Array Transfer 

SrcArray[0]

SrcArray[1]

...

...

….

SrcArray[N-1]

Source – 8 bit  flash array

1 byte

CPU Request

1 byte

  8 Bit

DMA 

Channel

Read Write

DMA 

Request 

Associated 

TD

DestArray[0]

DestArray[1]

...

...

….

DestArray[N-1]

Increment 

Destination 

Address

1 byte

1 byte

  8 Bit

Source

Address

Destination

Address1

Transfer 

Count (N)

Next TD

Pointer

Destination – 8 bit RAM array

DMA Transaction 

complete signal

Invaild TD

 

Top Design 

Figure 11. DMA configured to transfer data from flash to SRAM on CPU request 

 

Figure 12. LCD Display 

 
 

 
This example project shows the DMA configuration for bulk data transfer from memory to memory. 8-bytes of data defined in 
an array in flash memory is the source for DMA. The destination is another 8-byte array defined in RAM. The DMA moves 8 
bytes from the flash array to the RAM array. The transfer is activated by a CPU request. The end of transfer is identified by the 
NRQ signal of DMA, which activates the ISR_DMADone interrupt and displays the RAM contents on the LCD.  



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 11 

Channel Configuration 

Parameter Project Setting 

Upper Source 
Address 

 -HI16(CYDEV_FLS_BASE) , 
for PSoC 3 
-HI16(&sourceArray) for PSoC 
5 

Upper Destination 
Address HI16(CYDEV_SRAM_BASE) 

Burst Count 1 Byte 

Request Per Burst  False 

Initial TD TD0 

Preserve TD 0 

  
The source for DMA transfer is the sourceArrray defined in 
flash memory. The destination is ‗destinationArray‘ in 
RAM. The upper 16 bits of source address is set with 
HI16(&sourceArray) in PSoC 5 where HI16 macro sends 
the upper 16 bits of the 32-bit address of the flash array 
(sourceArray). In PSoC 3, HI16(HI16 (&sourceArray) does 
not give the correct upper 16-bit address because the Keil 
compiler keeps Keil-specific information in the upper bits 
of the array pointer. The macro HI16(CYDEV_FLS_BASE) 
is used to identify the upper 16 bits of source address for 
PSoC 3. CYDEV_FLS_BASE, which is defined in the 
source file cydevice.h created in PSoC Creator, identifies 
the base address for the entire flash memory in PSoC 3. 
In PSoC 5, the flash address range is ‗0x0000 0000 to 
0x0003 FFFF‘. The upper 16 bits of the entire flash 
address is not a fixed value; it is defined by the location of 
the lookup table in flash memory and is identified by 
HI16(&sourceArray). 
 
Similarly, the upper 16 bits of RAM array address is given 
by the macro HI16(CYDEV_SRAM_BASE), where 
‗CYDEV_SRAM_BASE‘ is the SRAM base address 
defined in cydevice.h. HI16(&destinationArray) will also 
work for PSoC 5 but not for PSoC 3. You should always 
use CYDEV_SRAM_BASE to identify the upper 16 bits of 
RAM variables/array in PSoC 3. 
 
In this example, DMA must read byte by byte and write to 
the destination. For this reason, the burst count is set to 1 
byte. The width of the spoke attached to source (system 
bus) as well as destination (RAM) is 32 bits wide; 
therefore you can set the burst count to 4 bytes as well for 
faster data transfers. In this case, the DMA will read and 
write 4 bytes in one burst.  
In this example, the CPU gives only one DMA request and 
the entire transfer (multiple bursts) must occur after a 
single request. For this reason, the request per burst 
parameter is set to 0(false) because separate requests are 
not required for each burst transfer.  
Because the transaction is done only one time, the TDs do 
not need to be preserved.  

 
TD0 Configuration 
 

Parameter Project Setting 

Source 
Address LO16(&sourceArray) 

Destination 
Address LO16(&destinationArray) 

Transfer 
Count N (8 bytes ) 

TD 
property  

  TD_INC_SRC_ADR 
  TD_INC_DST_ADR 
DMA__TD_TERMOUT_EN 

Next TD  None (Terminate TD – 0xFE) 

 
The lower 16 bits of the source address and destination 
address for the TD configuration are identified by the 
LO16 macro. Because a total of 8 bytes must be copied 
from flash array (sourceArray) to RAM array 
(destinationArray), the transfer count is set to 8. The TD is 
configured to increase the source address (flash array 
pointer) and destination address (RAM array pointer) after 
each burst (TD_INC_SRC_ADR|TD_INC_DST_ADR). The 
TD is also configured to send a termout pulse 
(DMA__TD_TERMOUT_EN) after all the 8 bytes in the 
array are moved from flash to RAM. This pulse is used to 
activate an ISR when the transfer is finished. The next TD 
is set to Invalid TD (0xFE) to stop the TD chain after the 
transfer is finished.  
 

Operation 

 

A CPU request uses the API 
CyDmaChSetRequest(Channel_handle,CPU_REQ)  .   
to activate the DMA transfer. 
 
When it receives a request from the CPU, the DMA 
transfers one byte(burst) from flash array to RAM array, 
increases both source and destination addresses (burst 
count) by one and decreases the transfer count by one. 
Because the request per burst parameter of the channel is 
set to 0 (false), subsequent burst transfers occur one after 
the other until all the 8 bytes (transfer count) are moved 
from flash memory array to the RAM array.  
 
When the transfer count is zero, the termout pulse is 
generated on the nrq line. This activates an interrupt which 
sets the flag to indicate that the transfer is complete. The 
new RAM contents are then displayed on the LCD.  
 
If there are pending requests from another DMA channel 
while the transfer occurs, the DMA Controller may fulfill 
other DMA channel requests in between the bursts.  
For more information, see the following code example: 
DMA Memory Transfer in PSoC®3 / PSoC 5 

http://www.cypress.com/?rID=38795


AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 12 

Example 5: Ping-Pong Buffer 
This example project shows how to use DMA to do ping-pong buffering. 

Figure 13. Ping-Pong Buffer 

Sample 1

Sample 2

...

...

….

Sample N1

Destination1: 

RAM Buffer1

Increment 

Destination 

Address

Sample 1

Sample 2

...

...

….

Sample N2

Destination2 : 

RAM Buffer2

Increment 

Destination 

Address

DMA Transaction 

complete signal

TD1àTD2 TD2àTD1

    
    

    
 B

urst2

           Burst N1          Burst (N1+1)

B
urst (N

1+N
2)

TD0

Source – ADC 

Output 

Register

DMA 

Channel

ADC

EoC

Read Write

DMA 

Request 

2 Byte

Associated 

TD

Source Destination
Transfer 

Count(2×N1)

Next TD

Pointer
Source Destination

Transfer 

Count(2×N2)

Next TD

Pointer
TD1

Burs
t1

 
In this example, ADC data is collected in RAM buffer 1. After RAM buffer 1 is full, the destination is changed to RAM buffer 2. 
This example includes two transactions: 
 Transaction 1: ADC to RAM buffer1 

 Transaction 2: ADC to RAM buffer2 

 
Because the upper 16-bit address for both the transactions is the same, you need only a single DMA channel and two TDs.  
 

Top Design 

Figure 14. ADC-DMA Memory 

 
 

 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 13 

Channel Configuration 

The following table shows the channel configuration, which is similar to that in Example 2. 

Parameter Setting 

Upper Source Address HI16(ADC_DEC_OUTSAMP_PTR) 

Upper Destination Address   HI16(CYDEV_SRAM_BASE) 

Burst Count 2 byte 

Request Per Burst  True (1) 

Initial TD TD0 

Preserve TD Yes(1) 

 
Transaction 1 uses TD0, and Transaction 2 uses TD1. To attach the transactions to each other, the Next TD parameter of 

TD0 is set to TD1 and vice versa. 
 

TD0 Configuration 

Parameter Project Setting 

Lower Source Address LO16(ADC_DEC_OUTSAMP_PTR) 

Lower Destination Address LO16(adc_sampleArray1) 

Transfer Count N1×2 ( No. of samples × Bytes per sample) 

TD property  

  Increment Destination Address 
  Generate DMA done event 
  Swap Enable required for PSoC 3 

Next TD TD1 

 

TD1 Configuration 

Parameter Project Setting 

Lower Source Address LO16(ADC_DEC_OUTSAMP_PTR) 

Lower Destination Address LO16(adc_sampleArray2) 

Transfer Count N2×2 ( No. of samples × Bytes per sample) 

TD property  

  Increment Destination Address 
  Generate DMA done event 
  Swap Enable required for PSoC 3 

Next TD TD0 

 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 14 

Example 6: Multiplexed Data Buffering 
This example shows how to collect ADC data when the input to ADC is multiplexed. If a single DMA channel is used to collect 
multiplexed ADC data, the buffered data will be as shown in Figure 155 with channel 1 
and channel 2 data combined. But you can also keep the channel 1 and channel 2 data separate.
 

Figure 15. Multiplexed Data Buffering Using Single Channel 

Source : ADC output Register Sample 1 – Ch1

Sample 2 – Ch2

...

...

….

Sample ‗2N‘ -  Ch2

Destination : RAM Buffer

DMA Transaction 

complete signal

Transfer 1

Transfer ‗2N
‘

  Transfer2

DMA 

Channel

ADC

EoC

Read Write

DMA Request 

Source Destination
Transfer Count 

(2N)
Next TD

Increment 

Destination 

Address

16 bit

Associated TD

TD0 None

Ch1

Mux
Ch2

Mux sel 

 

DMA channels cannot change between two transactions until the entire transfer count is finished. For this reason, multiple TDs 
will not work as well.. Figure 16 shows how you can use multiple DMA channels and multiplex them to move the multiplexed 
channel data into separate buffers. 

Figure 16. Multiple DMA Channels for Buffering Multiplexed ADC Data 

Sample 1

Sample 2

...

...

….

         Sample 

Destination – RAM Ch1 Buffer

Increment 

Destination 

Address
Ch1

Mux
Ch2

Mux sel 

Source – ADC output Register

ADC

EoC

2 Byte

2 Byte

DMA 

Channel1

Read Write

DMA 

Request 

Associated 

TD

DMA Transaction 

complete signal

Source

Address

Destination

Address

Transfer 

Count (2N)
Next TD

Sample 1

Sample 2

...

...

….

Sample  N

Destination – RAM Ch2 Buffer

Increment 

Destination 

AddressTra
nsfe

r 1

Transfer 2

Transfer N

DMA 

Channel2

Read Write

DMA 

Request 

Associated 

TD

DMA Transaction 

complete signal

Source

Address

Destination

Address

Transfer 

Count (2N)

Next TD

Pointer

None

None

Tra
nsfe

r 1

Transfer 2

Transfer N
N

N

Demux

 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 15 

 

 
The EoC signal must be demultiplexed to trigger channel1 and channel2 alternatively. The top design of an actual three 
channel multiplexed data buffering implementation is shown in Figure 17.  

Figure 17. Top Design 

 
 
The EoC signal changes the output of the LUT state machine whose output activates DMA channels 1–3 in order .The LUT 
output also controls the hardware multiplexing of the ADC channels. The channel and TD configuration are the similar to 
Example 2.  
 
 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 16 

Appendix A: DMA Component Hardware Configuration 
 

Figure 18 shows the DMA channel component that 
PSoC Creator includes under the Systems tab in the 

Component Catalog. You must use this DMA channel 
component and a set of APIs to configure DMA for a 
data transfer.  

Figure 18. DMA Channel Component 

 
 
Input/Output Connections of DMA component 

 
You can configure DMA to create a pulse of width 2 
bus clocks at the NRQ terminal when the transfer is 
finished. The nrq terminal can be connected to an 
interrupt, or to another component to tell that the DMA 
transfer is finished. 
 
The transaction descriptor (TD) configuration defines 
whether or not to generate a signal on the nrq 
terminal when the transfer is finished. 
 
You can set the following parameters in the 
component configuration window: 

 
Hardware Request (drq): This setting defines the 
type of signal (rising edge/level) the DMAC will get as 
the DMA channel trigger. Any selection for this 
parameter except "Disabled" adds a drq terminal to 
the component, which allows a DMA request to be 
made from any hardware source. 

Figure 19. Hardware Request 

 
Without drq terminal, the DMA transaction is activated 
only by the CPU. When this parameter is set to 
―derived‖, the DMA trigger type -edge/level is 
determined from the source of the DMA trigger. For 
more information, see the DMA component 
datasheet. 
 
Hardware Termination (trq):  

When this option is set to true, another input terminal 
(trq) is displayed in the component. The DMA 
transaction can be stopped by giving a  hardware 
request signal(positive edge) to this terminal if 
TD_TERMIN is enabled. Without this terminal, the 
DMA transaction is stopped only by the CPU or when 
the transfer is finished and the transaction is attached 
in a chained configuration with a terminate TD chain.

Setting DMA Channel Priority 

When multiple DMA channel requests are active, the DMA channels are processed by DMAC based on the channel 
priority settings. Each DMA channel can be given one of the eight different priorities. The DMA channel priority is set 
in PSoC Creator in Design Wide Resources (*.cydwr) > DMA as shown in Figure 20. 

 

Figure 20. Setting DMA Channel Priority 

 
 
When both the CPU and DMAC request access to the 
same spoke on PHUB at the same time, the CPU 
takes the higher priority by default. The PHUB 

manages the arbitration between the DMA channels 
and the CPU and DMAC manages arbitration 
between various DMA channels. For more 
information, see PSoC® 3, PSoC® 5 Architecture 
TRM. 

http://www.cypress.com/?rID=35180
http://www.cypress.com/?rID=35180


AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 17 

 

 
Appendix B: DMA Wizard Configuration 

 
The DMA Wizard can define the firmware configuration of the DMA channel and TD. To start the DMA wizard, go to 
PSoC Creator>Tools>DMA Wizard.  

The wizard supports only a few peripherals as source or destination for the DMA channel. The user must use the 
firmware configuration steps given in Appendix C to configure the DMA, if the DMA wizard does not support the 
peripheral involved in the user‘s DMA project.  
 
Step 1: Select a DMA channel (DMA component 
instance) 

Figure 21.Selecting DMA Channel 

 
 
Select the DMA channel to be configured: 

 Project: Name of the project 
 DMA: DMA component instance name in 

your project 
Click Next after you select the channel. 

 
Step 2: Select global settings 

Figure 22. Global Settings 

 
 
Use this window to select the DMA channel 
configuration parameters such as: 
Source and Destination:  The base address for the 
DMA channel‘s source and destination. The upper 16 
bits of the source and destination address for the 

DMA channel is set in the channel configuration 
registers based on this setting. 
Bytes per Burst: The number of bytes to be moved 
nin a single burst. 

Each Burst Requires a Request: Whether each 

burst requires a separate request. 

Number of TDs: The number of transaction 

descriptors associated to the DMA channel. (between 
1 and 128). 

Single Chain or Loop: This defines what the ‗Next 
TD‘ will be for the last TD associated with the DMA 

channel. If single chain, the next TD will be END TD 
chain. If loop, it will loop back to the first TD. 

After you are finished, click Next. 

 
Step 3: Define the transaction descriptors for the 

channel 

Figure 23. Transaction Descriptors 

 

The following table shows information about 
each TD configuration parameter.

DMA 
component 
instance 
name 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 18 

 
TD Configuration details 

Field Description 

TD# Displays the logical number for the Transaction Descriptor.  

Endian Enables 2- or 4-byte endian byte swapping. This enables swapping the byte while the data 
moves from source to destination. The Bytes per Burst setting must be set as a multiple of 

the endian selection. This is usually used for DMA transfers between PSoC 3 memory and 
peripherals because of the difference in endianess. 

Term In Enables ending the TD transaction on a rising edge of the TERMIN(trq) signal. 

Term Out Enables the creation of the TERMOUT (nrq) signal when the TD finishes. 

Length This specifies the transfer count for the TD in bytes (0 to 4095). This is the total number of 
bytes that the DMA should transfer to complete the transaction. 

Source The lower 16 bits of the source address for the DMA transfer. A drop-down list of addresses 
for the source will be given by the DMA wizard if the source selected is a component (not 
memory). You can also edit or enter the source address manually. 

Inc (Source) Enables an increase of the source address as the DMA does the transaction. If this is 
enabled, every time the DMA reads the data from source, the source address is increased by 
the number of bytes that the DMA has read. The DMA will increase the source address until 
the entire transaction (transfer count) is finished. 

Destination The lower 16 bits of the source address for the DMA transfer. A drop-down list of addresses 
for the destination will be given by the DMA wizard if the destination selected is a component 
(not memory). You can also edit or enter the destination address manually. 

Inc(Destination) Enables an increase of the destination address as the DMA does the transaction. The DMA 
will increase the destination address until the entire transaction (transfer count) is finished. 

Auto Next Automatically execute the next TD without another DMA request. 

Next TD The next logical TD in the chain of TDs. Set to END if this TD chain is finished with this TD. 

To go the Generate Code page, click Next. 

 

Step 4: Add to your firmware the code created by the DMA Wizard  

Figure 24.Generated Code 

  

After the DMA channels and TD configuration are finished, the wizard creates code for the DMA channel. This code 
includes the configuration for the DMA channel and the TDs. Make a copy of the code and paste it to main.c. 

For more information on the wizard, see the PSoC Creator Help file.  



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 19 

Appendix C: DMA Configuration – Important APIs 
 

The DMA component creates a source file (DMA_InstanceName_dma.c) and corresponding header file 
(DMA_InstanceName_dma.h) for each DMA instance. For example, if there is a DMA component instance in your design that 
has the name DMA_1, then the files - DMA_1_dma.c and DMA_1_dma.h are created during the build process. These files 
include the DmaInitialize API that is used to initialize the DMA channel. Use other DMA APIs included in CyDmac.c and 
CyDmac.h in the Generated Source folder for the remaining channel and TD configuration. 

Following are the major steps that are used to configure DMA for data transfers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Step 1: DMA Channel Initialization  

 
 
 
‗DmaInitialize’ API configures several DMA channel parameters such as the following: 

· DMA_BYTES_PER_BURST :  The number of bytes to be read and written by the DMA channel in one burst 

 

For example, if you want to define DMA to collect 8-bit ADC data, set this parameter to 1 because the DMA channel must 

move 1 byte from source to destination on each request. Or, if you want to collect 16-bit ADC data, set this parameter to 

2.   

· DMA_REQUEST_PER_BURST: Whether each burst must have a separate request. 

 

If set to 1, each burst transfer must be individually requested. If set to 0, all subsequent bursts after the first burst are 
automatically carried out without separate request. (Only the first burst transfer must have a DMA request.) 
 

· HI16(SourceAddress) : The upper 16 bits of the source address. HI16 is a macro created by PSoC Creator to specify 

the upper 16 bits of a 32-bit value or address. 
PSoc 3 Keil compiler stores Keil-specific information in the upper 16 bits of the variable address.  For this reason, use 
the following constants defined in CyDevice.h along with HI16 macro to configure the upper 16 bits of source and 
destination address for PSoC 3 especially when the source or destination for the DMA transfer is RAM or flash 
memory. 

. 
 

Source DMA_SRC_BASE 

Peripheral CYDEV_PERIPH_BASE 

RAM CYDEV_SRAM_BASE 

Flash CYDEV_FLS_BASE 

 
 

Channel_Handle = DMA_DmaInitialize(DMA_BYTES_PER_BURST, DMA_REQUEST_PER_BURST, 

HI16(SourceAddress), HI16(DestinationAddress)) 

 

1. Start the DMA channel 
Channel_Handle = DMA_DmaInitialize(DMA_BYTES_PER_BURST, DMA_REQUEST_PER_BURST, 

HI16(SourceAddress), HI16(DestinationAddress)) 

2. Create an instance of TD 
TD_Handle = CyDmaTdAllocate(); 

3. Set TD Configuration 
CyDmaTdSetConfiguration(TD_Handle,Transfer_Count,Next_TD,TD_Property); 

4. Set TD address 
CyDmaTdSetAddress(TD_Handle, LO16(SourceAddress), LO16(DestinationAddress)) 

5. Identify the first TD with the channel 
CyDmaChSetInitialTd(Channel_Handle , TD_Handle) 

6. Activate the DMA channel 
CyDmaChEnable(Channel_Handle, preserve_TD) 
 

 
 

 

 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 20 

· HI16(DestinationAddress) : The upper 16 bits of the  destination address. Use macros provided in the previous table to 

identify the source and destination address in PSoC 3.  
 

Step2: TD allocation 
 
 
 

 ‘CyDmaTdAllocate’ creates instances of TD and sends the handle to the TD. The TD handle is used by other APIs that 

configure the TD. To create multiple TDs, call the API multiple times.  

Step 3: TD configuration 
 
 

TD_Handle: A handle previously returned by CyDmaTdAllocate API 

 TD_Handle : A handle previously returned by CyDmaTdAllocate API 

 Transfer_Count : The total number of bytes to be moved from source to destination. 

Next_TD: Index of the next TD in the TD chain. Use DMA_INVALID_TD (0xFE) as Next_TD to end the TD chain. 
 
 TD_Property : Use the TD Configuration register flags to set the properties of the DMA transaction. The following table 

shows the TD property flags that are available. Use these flags ORed together to configure the TD property. For example, 
if you want to configure the TD to swap 4 bytes during the data transfer, use (TD_SWAP_EN| TD_SWAP_SIZE4) as the 
TD property setting. 

Configuration Flag Function 

TD_SWAP_EN  
Perform endian swap; swap bytes while moving data from source to 
destination.  

TD_SWAP_SIZE4  Swap size = 4 bytes . Default swap size is 2 bytes. 

TD_AUTO_EXEC_NEXT  
The next TD in the chain is activated automatically when the current 
TD finishes. 

TD_TERMIN_EN  

End this TD if a positive edge on the trq input line occurs. The 
positive edge must occur during a burst. That is the only time the 
DMAC listens for it. 

DMA__TD_TERMOUT_EN  

If this flag is used, a pulse is generated on the nrq line when the TD 
transfer is complete. This flag is specific to a DMA component  
instance and is defined in the component instance header file. For 
example, if the DMA component instance name is DMA_1 in the top 
design, the termout macro for the instance is 
‗DMA_1__TD_TERMOUT_EN’ which is included in DMA_1_dma.h. 

TD_INC_DST_ADR  
Increase destination address according to the size of each data 
burst transaction. 

TD_INC_SRC_ADR  
Increase source address according to the size of each data burst 
transaction. 

 

Step 4: Configuring TD source and destination 

 
 

 
 TD_Handle : A handle previously returned by CyDmaTdAllocate API 

 LO16(Source): Lower 16 address bits of the source of the data transfer. 

 LO16(destination): Lower 16 address bits of the destination of the data transfer. 

 
PSoC is highly programmable and therefore many peripherals are not static with fixed register blocks. They are 
created from the programmable digital blocks and physical location of peripheral block changes based on 
design. Therefore a conventional register map listing all the source and destination addresses is not possible for 
PSoC 3/PSoC 5. Instead you can refer to respective component generated header files to identify the register 
addresses to move data. The various registers associated with each component are defined in the respective 
component header files generated by PSoC creator during the build process. 

CyDmaTdSetAddress(TD_Handle, LO16(Source), LO16(destination)) 

 

CyDmaTdSetConfiguration(TD_Handle,Transfer_Count,Next_TD, TD_Property); 

    TD_Handle = CyDmaTdAllocate(); 



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 21 

 
Step 5: Attach the TD to the channel 

 
 

 
 Channel_Handle: The handle of the DMA instance returned by DMA_DmaInitialize() API.  
 TD_Handle : The index of the TD to be activated first. TD_Handle is returned by the CyDmaTdAllocate API during 

TD allocation. 

 
Step 6: Enable DMA channel 

 
 
 

· Channel_Handle: Handle of the DMA instance returned by DMA_DmaInitialize() API.  
 Preserve_TD If this option is set to 1, the channel retains the TD configurations set by the user (source, destination 

and transfer count) and makes the TD able to be repeated. 

Other Important APIs 

 

Use the following API if a CPU request is used to activate the DMA channel: 
 
  
 
 

Use the following API to disable the DMA channel: 
 

  

 
 

 

CyDmaChSetInitialTd(Channel_Handle , TD_Handle) 

 

CyDmaChEnable(Channel_Handle, Preserve_TD) 

 

CyDmaChSetRequest(Channel_Handle, CPU_REQ);

  

CyDmaChDisable (Channel_Handle);

  



AN52705 

June 6, 2011 Document No. 001-52705 Rev. *D 22 

Document History  
Document Title: PSoC® 3 / PSoC 5 - Getting Started with DMA – AN52705 

Document Number: 001-52705 

Revision ECN 
Orig. of 
Change 

Submission 
Date 

Description of Change 

** 2710860 LNAT 05/25/09 New Application Note. 

*A 2768731 LNAT 09/24/09 Updated the projects for PSoC Creator Beta 3 version. 
Added information about configuring the Termout signals 

*B 2951774 LNAT 06/14/10 Updated the projects for PSoC Creator Beta 4.1 
Added more information regarding the DMA configuration 

*C 2966485 LNAT 08/26/10 Updated the projects for PSoC Creator Beta 5. 
Used DMA Wizard in the projects. 

*D 3269575 LRDK 06/06/11 Rewritten in Simplified English. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PSoC is registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their 
respective owners. 
 

 
 

 

Cypress Semiconductor 
198 Champion Court 

San Jose, CA 95134-1709 
Phone: 408-943-2600 

Fax: 408-943-4730 
http://www.cypress.com/ 

 
© Cypress Semiconductor Corporation, 2009–2011. The information contained herein is subject to change without notice. Cypress Semiconductor 
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any 
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or 
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as 
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The 
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies 
Cypress against all charges.  
 
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide 
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a 
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative 
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress 
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source 
Code except as specified above is prohibited without the express written permission of Cypress. 
 
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT 
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the 
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or 
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a 
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‘ product in a life-support systems 
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. 
 
Use may be limited by and subject to the applicable Cypress software license agreement. 

http://www.cypress.com/

