

Implementing FFT Algorithms on PSoC® System

January 17, 2008 Document No. 001- 42877 Rev. ** 1

AN42877

Authors: Nicola Sgambelluri, Gaetano Valenza
Associated Project: No

Associated Part Family: CY8C29x66
Software Version: PSoC Designer 4.2+SP3

Associated Application Notes: None

Application Note Abstract
This application note describes how to implement a Fast Fourier Transform (FFT) in a PSoC

®
. The application shows a simple

embedded system on PSoC that evaluates the spectral analysis of an input analog signal in real time without any external
components.

The FFT, written in C, computes the spectrum from a time domain analog signal. The PSoC processes the samples through
an internal ADC converter before performing a 64-point FFT on the samples to obtain the spectrum in real time. The system
calculates the magnitude and frequency of the spectrum and displays the data on a PC using the RS232 protocol.
These features display the capability and flexibility of the PSoC system.

You can select and change the internal ADC based on a trade-off between the bandwidth and to resolve the input signal. The
PSoCEval1 board is used to test this application.

Introduction
The Fast Fourier Transform (FFT) is an efficient algorithm
to compute the Discrete Fourier Transform (DFT) and its
inverse that reduces the number of calculations to be
done.

The DFT is a numerical approximation of an analytically-
defined Fourier Transform in a digital domain.

The DFT of a sequence x[n] of N samples can be denoted
as X(k). The forward transform is defined as:

1 1

0

2N

n

N

nkj

enx
N

kX

for k=0…N-1.

The inverse transform is defined as:

1

0

2N

k

N

nkj

ekXnx

for n=0…N-1.

To evaluate the spectrum of a continuous signal x(t) a
sampling is performed every T seconds. The signal
evaluated with t=nT is represented by a finite length
sequence x[n]. The length of the temporal window and the
sampling-interval T, introduces numerical errors and
approximations. The complete process is shown in Figure
1.

The sampling rate must be greater than twice the highest
frequency of the time record, (fc≥2fmax) according to the

Nyquist sampling criterion. If the sampling rate in the time
domain is lower than the Nyquist rate, aliasing occurs.

Figure 1. DFT Evaluation Process

There are many FFT algorithms and different
optimizations; the FFT algorithm used here is the standard
Cooley-Tukey‟s algorithm. This algorithm decomposes the
DFT into two smaller DFTs.

Typically for the FFT algorithm, N is an integer multiple of
2.

The FFT algorithm is implemented in the hardware to
apply the DFT in real time to signals.

PSoC Implementation
When implementing the FFT algorithm in a simple µC
system, you must avoid the limitations caused by floating
point operations, memory, and sampling rate.

Floating Point Operations

For standard microcontrollers, it is best to implement
without floating point operations. But with the PSoC we
can use floating point capability because the fixed point
computation and the time execution are satisfactory.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-42877_pdf_p_1

AN42877

January 17, 2008 Document No. 001- 42877 Rev. ** 2

Memory

The algorithm requires memory space to store 3N
variables (double), 2N to store the real and imaginary
parts of the discrete Fourier transform, and N to evaluate
the modules.

The 29 series has a 2 kB RAM. For optimizing memory
usage, the paging memory maximizes the number of
samples (N) and overcomes the memory limitation.

Using this method, you can set the number of points up to
64 (N_points=64).

Reduce the number of samples and use the same code
for the 27 series.

To enable paging, refer to the Project Settings dialog
box, click on the Compiler tab and Enable paging in

PSoC designer, as shown in Figure 2.

Figure 2. Page Setting

If you want to test an optimization of the code you can use
the “Optimize math functions for speed” or “Compiler data
flow optimization.” The block diagram of the system is
shown in Figure 3.

Figure 3. Block Diagram of the System

To compute the DFT of a continuous signal, there must be
a preliminary discretization.

The discretization that introduces periodicity in time and
frequency domains is provided with the ADC block.

Sampling Rate

To overcome the sample time limitation, select a fast ADC
converter Delta Sigma-11 bit to process the signal.

This resource allows a sampling rate up to 7.8K samples
per second with an 11-bit resolution.

Sampling Parameters
The sampling parameters strictly depend on the assumed
ADC.

To set the maximum sampling rate available (see ADC
data sheet for details) the data clock is:

Mhz 8
3

1

SysClk
VC

.

The sampling period is:

s 128
1

samplesN
T

The time record is:

ms 8.205
int

samples

spo

C
N

N
T

According to the Nyquist sampling criterion, the maximum
frequency applicable for the FFT is:

z 3900
2

1
max H

T
f

The frequency sampling interval for the FFT is:

Df=1/Tc=121.875 Hz

Note You can obtain the highest sample rate with the

ADCIN which has a sample rate up to 46.8 ksps. It allows
fast speed but low resolution.

The Firmware
The code is written in C using the example project,
C_Example_ADC_UART_LCD.

The „fft.h‟ file contains the FFT algorithm and the
parameters for computation. A standard mathematical
library is included.

„N_points=64‟ represents the number of the points. In the
„main.c‟, N_samples=7800‟ is the number of samples and
„time=N_points/N_samples‟ the time record.

Three double array of N_points (data_re[N_points],
data_im[N_points], and mod[N_points]) are initialized to

zero before computation.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-42877_pdf_p_2

AN42877

January 17, 2008 Document No. 001- 42877 Rev. ** 3

When the samples read from the ADC are ready, they are
stored in the data_re and data_im vectors. The data_re
array contains the real values of the sampled sequence
x[n]. Data_im contains the imaginary values.

When the FFT is complete, the code evaluates the
absolute values of the spectral components of X(k) and
stores the data in the vector mod[i]. The data is sent to a

PC using the RS232 protocol and then displays on the
LCD.

The output is provided in the magnitude and frequency of
the fundamental harmonic, except for the DC component
and the actual frequency sampling interval df.

VC1 provides a sample clock of 3 MHz to the
DELTA_SIGMA-11 bit, resulting in a sample rate of 7.8K
samples per second. VC3 generates the baud clock of
19200 bps for the UART.

Any terminal utility, such as Hyper Terminal, can be used
to view the results. Customized software in C++ is used
here to plot the results according to the RS232 protocol.

In Figure 4, the graph in the oscilloscope shows a sine
wave shifted upwards by a positive offset.

Figure 4. Experimental Setup

Figure 5 shows the experimental setup with a signal
generator connected to the evaluation board through the
analog pin input, port0_pin1 and gnd.

Figure 5. Experimental Setup with PSoC Board

The LCD shows in real time magnitude and phase of the
estimated fundamental harmonic in Figure 6.

Some examples of signals in the frequency domain are
obtained using a simple data logger plot.

Figure 6. FFT Algorithm Running on PSoCEval1

In Figure 7, the estimated spectrum of a sine wave at a
frequency of approximately 1828 Hz (1828.125 Hz) is
displayed.

Figure 7. Estimated Spectrum of a Sinusoidal Waveform in
the Frequency Domain with a DC Offset

The spectrum consists of a fundamental at approximately
1800 Hz due to the sine wave and one more at zero
frequency. The width of the spectrum is proportional to the
amplitude of the sine wave. The zero frequency
component is due to the DC level (positive), which was
used to maximize the signal within the dynamic range of
the ADC.

Figure 8 shows the estimated spectrum of a triangular
waveform at approximately 1218 Hz comprising a DC
offset.

Figure 8. Estimated Spectrum of a Triangular Waveform in
the Frequency Domain

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-42877_pdf_p_3

AN42877

January 17, 2008 Document No. 001- 42877 Rev. ** 4

A brief analysis of the complexity and speed is provided.
Table 1 reports the memory occupation (RAM) of the code
with and without paging in terms of N samples. By
changing other parameters such as sampling rate, ADC
performance, power factors, different results are obtained.
For sake of completeness, the values 1, 3 (* N is typically
an integer multiple of 2) are included.

Table 1. RAM Occupation

Samples N. RAM bytes (%)

Paging No Paging

1* 74 bytes (3%) 74 (28%)

2 86 (4%) 86 (33%)

3* 98 (5%) 98 (38%)

4 110 (5%) 110 (42%)

8 158 (8%) 158 (61%)

16 254 (14%) 254 (99%)

32 446 (24%) Overflow

64 830 (46%) Overflow

>64 Overflow Overflow

The real time effectiveness of the algorithm cannot be
easily estimated and evaluated. A simple benchmark test
based on a timer-interrupt routine is used to measure the
response time (24 MHz CPU core frequency). Table 2
contains average results obtained using this test in terms
of real time computation. The timing implemented
internally perturbs partially the numerical computation.

Table 2. FFT Computation (CPU Frequency 24 MHz)

Samples N. FFT approx. time (msec)

4 10

16 15

32 20

64 40

Summary
This application note describes the implementation of a
Fast Fourier Transform (FFT) algorithm in a PSoC system.
It also illustrates the possibility of evaluating the spectrum
of an analog input in real time without any external
components. A simple embedded FFT implementation is a
useful solution in various applications for data acquisition
and signal conditioning; for example, biomedical signal
analysis such as ECG and EEG.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-42877_pdf_p_4

AN42877

January 17, 2008 Document No. 001- 42877 Rev. ** 5

About the Authors

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2008. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‟ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Name: Nicola Sgambelluri and Gaetano
Valenza

Title: PhD, Electronic Engineer and
Electronic Engineer, respectively.

Background: Nicola received his MSc degree in
Electronic Engineering from the
University of Pisa in 2002, and the PhD
degree in Automation, Robotics and
Bioengineering in 2006.

His main research interests concern
embedded control, microprocessors,
haptic devices, hardware software
systems, real-time applications,
domotics, robotics and mechatronics.

Gaetano Valenza is a Biomedical
engineer with expertise in
bioengineering and electronic
applications.

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-42877_pdf_p_5

