AD変換の演習

lab3_adc PSoC Experiment Lab

Experiment Course Material V 3.10 November 10^{th.}, 2020 lab3_adc.pptx (33Slides) Renji Mikami

MIKAMI CONSULTING 2018

入力アナログ電圧をPGAで増幅しこれをAD変換して値をLCD表示 - デジタル電圧計を作ります.

AD変換によって何ができるか

これまでは、出力側のアプリケーション演習を行ってきました。出力には、アナログ出力、デジタル出力がありました。表現の形態としては、LCDディスプレイへの表示、サウンド出力、LEDの点滅などがありました。

しかしこれらは、画一的な機能の表現です。連続的な入力の変化によって出力を変化 させることはありません。入力によって出力を連続的に制御したり変化させるためには、 何らかの形で入力情報を連続的に取り込む必要があります。

AD変換では、アナログ的な電圧の変化をデジタル量に変換できますから、外部の変化量を電圧変化への置きかえれば、アナログ的な連続的な変化量を扱うことができます。

アナログ的な入力素子としては、さまざまなセンサーがありますが、この多くは電圧出力になっています。

よって、センサー出力 ー> 増幅 ー> AD変換 ー> デジタル数値化 が可能に なりますから、これによりMPUで自由にデータの処理や外部制御や出力が可能になり ます

例えば、温度によって音が変化するシンセサイザ、3軸の加速度(ジャイロ)センサをコントローラにした楽器なども可能です。

MPUとアナログ入力

入力側

出力側

3つのユーザーモジュールでの設計

ユーザーモジュールは,パラメタライズされた機能ライブラ リ(IPのようなもの)

選択したユーザーモジュールは自動的に内部リソースの コンビネーションで実現される

内部リソースは,コース・グレインで作りこまれているので集 積度が高く効率が高い

極少の配線数で機能を実現できるので,シリコンの使用効 率が高い

AD変換時のRef Muxの設定

Ref Mux はアナロググランドのレベルを決定し アナログ信号の上下の振幅範囲を決定します これはPSoCのオペアンプが単電源のため 0Vをグランドレベルとしてマイナス側の信号を 扱えないため基準電位をかさ上げします。 このようにしてかさ上げ設定したレベルを アナロググランド電位と呼んでいます. lab_motor のPGAのRefの選択枝に AGNDがありましたが,ここで設定します

Glo	bal Resources -	lab3_adc 🚽 🗸 🗧
	CPU_Clock	3_MHz (SysClk/8)
	32K_Select	Internal
	PLL_Mode	Disable
	Sleep_Timer	512_Hz
С	VC1= SysClk/I	3
	VC2= VC1/N	1
	VC3 Source	SysClk/1
	VC3 Divider	1
	SysClk Source	Internal 24_MHz
	SysClk*2 Disal	No
	Analog Power	SC On/Ref Low
	Ref Mux	(Vdd/2)+/-(Vdd/2)
	AGndBypass	Disable
	Op-Amp Bias	Low
	A_Buff_Power	Low
	SwitchModePui	OFF
	Trip Voltage [L	4.81∨ (5.00∨)
	LVDThrottleBa	Disable
	Supply Voltage	5.0V
	Watchdog Enab	Disable

RefMuxの設定と範囲について

RefMuxについて

RefMuxはADの入力レンジを決定

表示	5V駆動	3.3Ⅴ駆動
[Vdd/2]+/-BandGap	2.5 V±1.3 V	$1.65V \pm 1.3V$
[Vdd/2]+/-[Vdd/2]	2.5 V±2.5 V	$1.65V \pm 1.65V$
BandGap+/-BandGap	1.3 V±1.3 V	$1.3V \pm 1.3V$
1.6 BandGap+/-1.6 BandGap	2.08V±2.08V	使用不可
2 BandGap+/-BandGap	2.6 V±1.3 V	使用不可
2 BandGap+/-P2[6]	2.6 V±P2[6]V	2.6 V±P2[6]V
P2[4] +/-BandGap	P2[4] V±1.3V	P2[4] V±1.3V
P2[4] +/-P2[6]	P2[4]V +/-P2[6]V	P2[4]V +/-P2[6]V

BandGap電圧は内部で1.2xx..Vから昇圧した1.3Vとなります.実はこの電圧もレジスタ値でトリミングできます. Reference 電圧を外部から入力することができますが,これができるピンはPort2[4]です.

3210EVAL1ではPort2はLCDに接続されています。

ADCINC_flsDataAvailable 値は、AD変換が終了してデータが読み込み可能な状態になったときに0になるレジスタ

このプログラムでは、ポーリングで 値を読みに行って、0のとき (データが読み込み可能のとき) adc_dataにAD変換値を代入する

ADCINCユーザーモジュールは、 割り込みが用意されていないので ポーリングでステータスを読む

AD変換のユーザーモジュールには 12種類あり、8ビット以下のものは, 割り込みが使える

d
11

ラボ lab3_adc 手順

1.PGA, ADCINC, LCD ユーザーモジュールを配置

2.モジュール間を結線、パラメータを設定

3.GCとBuild

4.ジャンパ線で配線します

5.プログラムしてVRを回して値を読み取ります

解説:

新規プロジェクトの作成(旧版ソフトウェアの場合)

- 1. File > New Project をクリック
- 2. Chip-level Project を選択
- 3. Name を入力 例: lab3_adc
- **4.** Location を選択 例: C:¥psoc_lab¥lab3_adc
- 5. OK をクリック

ew Project		<u>? ×</u>
<u>Project types:</u>		
Chip-level S Project	vstem-level Project	
This is a classic	/4.x PSoC Designer project, selecting and placing user mod Lab3_ADC	dules.
Location: 4	C¥Documents and Settings¥muda¥デスクトップ	<u>B</u> rowse
- Workspace na <u>m</u> e:	Lab3_ADC Create directory for	r workspace
<u>W</u> orkspace:	Create new Workspace	
	5 🧲	<u>O</u> K <u>C</u> ancel

使用するPSoC、言語の選択(旧版ソフトウェアの場合)

- 1. View Catalog をクリック
- 2. CY8C27443-24PXI を選択
- 3. Select をクリック
- 4. C を選択
- 5. OK をクリック

Path:		<u>B</u> rowse
	C Use the same target device C Select target device	Cl <u>e</u> ar Path
Select "	Target Device	
<u>D</u> evice:	CY8C27443-24PVX1 View Catalog	
	Generate 'Main' file using:	
	• Assembler	

ユーザーモジュールの追加,配置

View > User Module Catalogをクリッ クして以下の3つのモジュールを追加

1.ADCs > ADCINC > Single Stage Modulator をダブルクリック

2.ポップアップウィンドはOKで閉じる

3.Amplifiers > PGA

4.Misc Digital > LCD

グローバルパラメータの設定

View > Global Resource 1.VC1 を 3 2.Ref Mux を (Vdd/2)+/-(Vdd/2) 3.それ以外は 初期値

Ref Mux はアナロググランドのレベルを決定し アナログ信号の上下の振幅範囲を決定します これはPSoCのオペアンプが単電源のため 0Vをグランドレベルとしてマイナス側の信号を 扱えないため基準電位をかさ上げします。 このようにしてかさ上げ設定したレベルを アナロググランド電位と呼んでいます. lab_motor のPGAのRefの選択枝に AGNDがありましたが,ここで設定します

Glo	bal Resources -	lab3_adc 🚽 🖵 🤅
	CPU_Clock	3_MHz (SysClk/8)
	32K_Select	Internal
	PLL_Mode	Disable
	Sleep_Timer	512_Hz
C	VC1= SysClk/I	3
	VC2= VC1/N	1
	VC3 Source	SysClk/1
	VC3 Divider	1
	SysClk Source	Internal 24_MHz
	SysClk*2 Disal	No
	Analog Power	SC On/Ref Low
	Ref Mux	(Vdd/2)+/-(Vdd/2)
	AGndBypass	Disable
	Op-Amp Bias	Low
	A_Buff_Power	Low
	SwitchModePui	OFF
	Trip Voltage [L	4.81 ∨ (5.00∨)
	LVDThrottleBa	Disable
	Supply Voltage	5.0V
	Watchdog Enab	Disable

RefMuxについて

RefMuxはADの入力レンジを決定

表示	5V駆動	3.3V駆動
[Vdd/2]+/-BandGap	2.5 V±1.3 V	$1.65V \pm 1.3V$
[Vdd/2]+/-[Vdd/2]	2.5 V±2.5 V	$1.65V \pm 1.65V$
BandGap+/-BandGap	1.3 V±1.3 V	$1.3V \pm 1.3V$
1.6 BandGap+/-1.6 BandGap	$2.08V \pm 2.08V$	使用不可
2 BandGap+/-BandGap	2.6 V±1.3 V	使用不可
2 BandGap+/-P2[6]	2.6 V±P2[6]V	2.6 V±P2[6]V
P2[4] +/-BandGap	P2[4] V±1.3V	P2[4] V±1.3V
P2[4] +/-P2[6]	P2[4]V +/-P2[6]V	P2[4]V +/-P2[6]V

BandGap電圧は内部で1.2xx..Vから昇圧した1.3Vとなります.実はこの電圧もレジスタ値でトリミングできます. Reference 電圧を外部から入力することができますが,これができるピンはPort2[4]です.

3210EVAL1ではPort2はLCDに接続されています。

RefMuxについて

PGA入力の配線

View > Chip Editor

- 1. Analog_Column_InputMux_0 をクリック
- 2. Port0_1 を選択
- 3. PGAのInputを クリック
- 4. Analog_Column_inputMux_0を選択

移動	Alt+ドラッグ
拡大	Ctrl+クリック Ctrl+ドラッグ
縮小	Ctrl+shift+クリック Ctrl+shift+ドラッグ

PGA出力の配線

View > Chip Editor

- 1. PGAのAnalogBus をクリック
- 2. AnalogOutBus_0 を選択
- 3. AnalogOutbuf_0 をクリック
- 4. Port_0_3 を選択

PGAパラメータの設定

View > Chip Editor

1.デジタルブロック上のPGA_1 をクリック

2.Name & PGA_1 \rightarrow PGA

3.Gain を 1.000

4.Reference を VSS

それ以外は 初期値

Pr	operties - PGA	, म X	
	Name	PGA	
	User Module	PGA	
	Version	32	
	Gain	1.000	
	Input	AnalogColumn InputMLIX	
	Reference	VSS	
	AnalogBus	AnalogOutBus 0	

ADCINCの配線

View > Chip Editor

- 1. AnalogColumn_Clock_0 をクリック
- 2. VC1 を選択
- 3. ADCINC_1のPosInput をクリック
- 4. ACB00 を選択

ADCINCパラメータの設定

View > Chip Editor

1.デジタルブロック上のADCINC_1 をクリック

2.Name を ADCINC
3.DataFormat を Unsigned
4.Resolution を 12 Bit
5.Data Clock を VC1
6.NegInput を ACB00
7.PWM Output を None

それ以外は 初期値

LCDパラメータの設定

View > Chip Editor

- 1. 画面右上内の LCD_1 をクリック
- LCD_1のパラメータを入力
 名前の変更 LCD_1 → LCD
 使用ポートの指定 Port2

I	Properties - LCD		→ ∓ X
2	Name	LCD	
	User Module	LCD	
	Version	1.5	
	LCDPort	Port_2	
	BarGraph	Enable	

GC(Generate Configuration)

Build > Generate Configuration Files... をクリック

• GCが終了したら main.c をダブルクリック ソースコード記述画面へ

ソースコード記述

main 関数内に
 ソースコードを入力

LCD_Position 文の説明

LCD_Position(m, n) m:0上の行に表示 1下の行に表示 n:左から n+1 文字目 から表示(nは空白数)

```
Start Page
         lab3_adc [Chip]
                     main.c
   1
   2
         C main line
   3
   4
   5
      #include <m8c.h>
                                // part specific constants and :
   6
      #include "PSoCAPI.h"
                               // PSoC API definitions for all
   7
   8
   9
     void main()
  10 🖂 {
  11
          unsigned int adc data;
          PGA Start (PGA HIGHPOWER);
  12
          LCD Start();
  13
          LCD_InitBG(LCD_SOLID_BG);
  14
          M8C EnableGInt;
  15
          ADCINC Start (ADCINC_HIGHPOWER);
  16
  17
          ADCINC GetSamples(0);
                                               大文字の
  18
          while(1){
  19
              while(ADCINC fIsDataAvailable() == 0);
              adc data = ADCINC wClearFlagGetData();
  20
  21
              LCD Position(0,0);
 22
              LCD PrHexInt(adc data);
 23
              LCD_DrawBG(1,0,16,(adc_data/50));
  24
          3
  25
    LB
  26
```

コンパイルとビルド

- Build > Compile 'lab3_adc' Project をクリック
- Build > Build 'lab3_adc' Project をクリック

Output Window でWarning や
 Errorが出たら
 !W または!E の行を
 ダブルクリックするとソースの
 エラー原因周辺がハイライト表示される

MiniProgの接続,回路配線

 P01とVRを接続 します。

• MiniProgをEval1に接続

ファームウェアの書き込み

- Programming Mode
 PowerCycle を選択
- をクリックすると 書き込み開始
- Actions を読んで状況を確認
- をクリックすると
 MINIProgを通じて電源を供給

ボリュームをまわして動作確認

このラボの ソースでは、 mVでの表示は されません。

ボリュームに接触不良がある場合は、表示が安定しないことがあります。その場合はボリュームを 上から軽く押さえながら回してください。このノイズ電圧を乱数のシード値に使うこともできます。 距離センサー(10~80cm計測)を接続してみよう

①黄端子は 距離に応じた 電圧が出力 (手とセンサの 距離を変えて みよう。) ②黒端子は GNDに 接続 ③赤端子は VCC(5V)に 接続 HP資Sensors を参照。

ジャンパー線の色が違うものがありますから白い3ピン端子の位置で確認してください。正面(目玉のある方)から見て左が①出力、中央が②GND、右が③VCC5Vです。

Memo

フォローアップURL (Revised) http://mikami.a.la9.jp/meiji/MEIJI.htm

担当講師 三上廉司(みかみれんじ) Renji_Mikami(at_mark)nifty.com mikami(at_mark)meiji.ac.jp (Alternative) http://mikami.a.la9.jp/_edu.htm