PWM 回路の演習

lab1_pwm PSoC Experiment Lab

Experiment Course Material V1.30 October 24^{th.}, 2020 lab1_pwm.pptx (30Slides) Renji Mikami

MIKAMI CONSULTING

デジタル出力を使った出力の駆動,クロックリソースの演習 PWMを使用した任意の周波数(Period)と幅(Pulse Width) を持つパルスの作り方がポイント

★ PSoCのクロック・システムについて

Period Register 値はPWM周波数を設定 VC3周波数が375Hz, Periodが249であればPeriod時間 は、1/375*(1+249) sec = 0.67sec1.5 Hz Pulse Width Register 値はパルス幅を設定 VC3周波数が375Hz, Pulse Width が124であれば、パル ス幅は、1/375*(1+124) sec = 0.33 1.5Hzに対して 50%duty

PWM波形とDuty

波形は、Period と Pulse Width で決まる Duty が50%ならこのPWMの積分電圧は2.5V

PCやスマホの電源では、 スイッチングレギュレータで PWMを使って任意の電圧を 作っている。

Duty が33.3%なら 右のPWMの積分電圧 は≒1.67V

通販のサーボモータを動かしてみる

はPulse Width設定値)

配線の色と電源、信号 赤:+5V電源 黒:0Vグランド 白:制御パルス入力 秋月にて購入のGWS社のMicro STD サーボモーター 赤ラインが+5V,黒がGND,白が制御信号 この手のサーボの制御は,15ms から20msの周期でコントロー ル、パルスの幅は1ms内外と見当をつけて試してみます。 PSoCのPWM16モジュールを使用して動作させてみました。結 果として,制御角度範囲は約180度,0度に設定するパルス幅が 0.7msec, 180度に設定するパルス幅が2.4msecでした。(数字

動作範囲を超える幅のパルスを与えると異常な動きをすること (片側によってカタカタを繰り返すなど)があります。PSoC基板で は、電力が不足する場合は、外部電源を与えてください。

約2.4msec

約0.7msec

★ Global Resourceの設定と基本周期について

G	lobal Resources - motor	
	CPU_Clock	24_MHz (SysClk/1)
	32K_Select	Internal
	PLL_Mode	Disable
	Sleep_Timer	512_Hz
	VC1= SysClk/N	16
	VC2= VC1/N	16
	VC3 Source	SysClk/1
	VC3 Divider	1
	SysClk Source	Internal 24_MHz
	SysClk*2 Disable	No
	Analog Power	SC On/Ref Low
	Ref Mux	(Vdd/2)+/-BandGap
	AGndBypass	Disable
	Op-Amp Bias	Low
	A_Buff_Power	Low
	SwitchModePump	OFF
	Trip Voltage [LVD (SMP)]	4.81 V (5.00 V)
	LVDThrottleBack	Disable
	Supply Voltage	5.0V
	Watchdog Enable	Disable

PWM16でPeriod レジスタの値を設定 93.75KHz / 1835 = 約51Hz (19.6msec) これを基本周期にしてみました。

CPU Clock 24Mhz VC1 = 1.5MHz(24MHz x 1/16) VC2 = 93.75KHz (VC1 x 1/16) VC2のクロックでPWM16を駆動

The second s	F WWWI O_I
User Module	PWM16
Version	2.5
Clock	VC2
Enable	High
CompareOut	Row_0_Output_0
TerminalCountOut	None
Period	1835
PulseWidth	65
CompareType	Less Than Or Equa
InterruptType	Terminal Count
ClockSync	Sync to SysClk
InvertEnable	Normal

ここではPWMの設定値は簡略化していますから正確な計算法は かならずユーザーモジュールデータシートで確認してください

Properties - PWM16 1 PWM16 1 Name Pulse Width 65を設定 PWM16 User Module 25 Version 93.75KHZ = 約 0.011msecの解像度 VC2 Clock Enable High Row_0_Output_0 CompareOut 0.011 x 65 で約0.7msecのパルスを生成 TerminalCountOut None 1835 Period 最大時は約2.4msecのためPulse Width値は225 PulseWidth 65 CompareType Less Than Or Equal InterruptType Terminal Count Sync to SysClk ClockSync **InvertEnable** Normal 約2.4msec (PW=225) PulseWidth 約0.7msec (PW=65) 65 225 Roll On ernier On Roll

パルス幅の変更で自由に回転角度を設定

★ プログラムソースからのAPIパラメータの制御法

PWMのプロパティ・ウィンドウで初期設定した値は, main.c から直接レジスタ 値を設定することで自由に変えることができます。

プログラム上から設定 するには右のように PWM16_WritePeriod() (Periodパラメータ設定) PWM16_WritePulseWidth() (Pulse幅パラメータ設定)

API関数を使用します。 PWMユーザーモジュール データシートを参照

This sample shows how to create a 33% duty cycle output pulse. The clock selected should be 1000 times the required ; period. The comparator operation is specified to be "Less than or Equal". /* include the Counter16 API header file #include "PWM16.h" /* function prototype */ void GenerateOneThirdDutvCvcle(void): /* Divide by eight function */ void GenerateOneThirdDutyCycle(void) /* set period to eight clocks */ PWM16 WritePeriod(999); /* set pulse width to generate a 33% duty cycle */ PWM16 WritePulseWidth(332); /* ensure interrupt is disabled */ PWM16 DisableInt();

/* start the PWM16! */

ラボ lab1_pwm 手順

1.PWM1 ユーザーモジュールを選択

2.Global Resource のクロック生成を設定します

3.PWMのPeriod RegisterとPulse Width Register の設定を行います

4.LEDを点灯します.

5.プログラムからPWMのレジスタ値を変えてみます.

解説:

 PWM8ユーザーモジュールを用いて LEDを1.5Hzで点滅

新規プロジェクトの作成(旧版ソフトウェアの場合)

PSoC Designer 5.0

- 1. File > New Project をクリック
- 2. Chip-level Project を選択
- 3. Name を入力 例: lab1_pwm
- **4.** Location を選択 例: C:¥psoc_lab¥lab1_pwm

 Eile
 Edit
 View
 Project
 Interconnect
 Build
 Debug
 Program

 New Project...
 Ctrl+Shift+N
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P
 P

New Project	<u>? x</u>
Project types:	
Chip-level System-level	
Project	
This is a classic v4.x PSoC Designer project, selecting and placing user modules.	
3	_
Name: Lab1_PWM	
Location: 4 C¥Documents and Settings¥muda¥デスクトップ	<u>B</u> rowse
Workspace na <u>m</u> e: Lab1_PWM Create directory for workspace	•
5 OK	Gancel
	20.001

5. OK をクリック

使用するPSoC、言語の選択(旧版ソフトウェアの場合)

- 1. View Catalog をクリック
- 2. CY8C27443-24PXI を選択
- 3. Select をクリック
- 4. C を選択
- 5. OK をクリック

Path:	1	Browse
	O Use the same target device O Select target device	Cl <u>e</u> ar Path
Select	Target Device	
<u>D</u> evice	x CY8C27443-24PVXI View Catalog	
	Generate 'Main' file using:	
	Messembler	

Chip Editor (回路図)の使い方

- Alt + ドラッグで移動
- Ctrl + クリックで拡大
- Ctrl + Shift + クリックで縮小
- 回路図上で右クリック • Show Allowed Connections で配線候補を可視化

	カピン	Ī	
Preserve Aspect Ratio			
Print			
Zoom In Ctrl+Click Zoom <u>O</u> ut Shift+Ctrl+Clic Original View	:k		移動
Pan Mode ✓ Higher Quality			拡大
<u>Eind</u> Find <u>Ag</u> ain			
Change Background	•		縮小
Refresh			AUM A
<u>H</u> elp A <u>b</u> out SVG Viewer			

Start Page | lab1_pwm [Chip]*

移動	Alt+ドラッグ
拡大	Ctrl+クリック Ctrl+ドラッグ
縮小	Ctrl+shift+クリック Ctrl+shift+ドラッグ

PWM8出力の配線1

- 1. PWM8 CompareOut をクリック
- 2. Row_0_Output_0 を選択
- 3. RO0[0]の右端のブロックをクリック
- 4. 一番上のバッファをクリック
- 5. GlobalOutEven_0 を選択
- 6. Close をクリック

PWM8出力の配線2

1. GOE 0 をクリック

2.設定ボックスのNoneをクリック

3. ▼をクリックして、
 Pin を Port_0_0 に設定

4. OK をクリック

グローバルパラメータの設定

View > Global Resources

- 1.VC1 を 16
- 2.VC2 を 16
- 3.VC3 Source を VC2
- 4.VC3 Divider を 250
- 5.それ以外は初期値

āle	ilobal Resources - lab1_pwm 🛛 🚽 🕈 🗙					
	CPU_Clock	3_MHz (SysClk/8)				
	32K_Select	Internal				
	PLL_Mode	Disable				
	Sleep Timer	512 Hz			_	
	VC1= SysClk/I	16				
	VC2= VC1/N	16				
	VC3 Source	VC2				
	VC3 Divider	250				
1	SysClk Source	Internal 24_MHz				
	SysClk*2 Disal	No				
	Analog Power	SC On/Ref Low				
	Ref Mux	(Vdd/2)+/-BandGa	Р			
	AGndBypass	Disable				
	Op-Amp Bias	Low				
	A_Buff_Power	Low				
	SwitchModePu	OFF				
	Trip Voltage [L	4.81 V (5.00V)				
	LVDThrottleBa	Disable				
	Supply Voltage	5.0V				
	Watchdog Enab	Disable				

PWM8パラメータの設定

1.デジタルブロック上のPWM8_1 をクリック

2.パラメータを入力

Pr	operties - PWM8_	_1 🚽 🕈 🗙
Ĩ	Name	PWM8_1
	User Module	PW/M8
	Version	2.5
	Clock	VC3
	Enable	High
	CompareOut	Row_0_Output_0
TerminalCount(None
	Period	249
	PulseWidth	124
	CompareType	Less Than Or Equal
	InterruptType	Terminal Count
	ClockSync	Sync to SysClk
	InvertEnable	Normal

各パラメータとクロックについて

GC(Generate Configuration)の実行

Build > Generate Configuration Files... をクリック

<u>B</u> ui	d <u>D</u> ebug P <u>r</u> ogram <u>T</u> ools <u>W</u> indow <u>H</u> elp	
₩	Generate/Build 'hello_world' Project	F6
	Generate/Build <u>A</u> ll Projects	Shift+F6
7	Generate Configuration Files for 'hello_world' Project	Ctrl+F6
8	Generate Configuration Files for All Projects	
	<u>C</u> ompile main.c	Ctrl+F7
	Build 'hello_world' Project	F7
	Rebuild 'hello_world' Project	
	Clean 'hello_world' Project	
	Show Last Build Report for 'hello_world' Project Ctr	rl+Shift+F7

GCにより、設定ファイル、ユーザー モジュールAPIが生成される。 配線、設定の変更を加えたならGCを する必要がある。 C ソースコードの記述

View > Chip Editor 1.Workspace Explorer 内の lab1_pwm をクリック 2.Source Files をクリック 3.main.c をダブルクリック main関数内にPWM8_1_Start();

を追加

Start Page lab1_pwn	n [Chip] main.c					
1 //						
2 // C main	n line					
3 //						
4						
5 #include	<m8c.h></m8c.h>	11	part	spec	ific	cons
6 #include	"PSoCAPI.h"	11	PSoC	API	defin	itio
7						
8						
9 void main	n()					
10 🖂 {						
11 // T	nsert vour main	ro	utine	code	here	
12 PWM8	1 Start();					
13 - }						

Build > Compile の実行

コンパイルエラーが出たら、Output Window のエラー行(!E/!W)を ダブルクリックすると、Cソースコードのエラー行にジャンプします。 (修正する場所は、他の行の場合もあります。)

ビルドの実行

• Build > Build 'Lab1_PWM' Project をクリック

0 error(s) と出れば成功

MiniProgの接続,回路配線

- P00 と LED1 を ジャンプワイヤー で接続
- MiniProg を Eval1 に接続 Vdd と + が一致するように

書き込み . Program > Program P	Part をクリック
<pre>hello_world - PSoC Designer 5.4 File Edit View Project Interconnect Build Debug Program Tools Window Help File Bill Bill Bill Bill Bill Bill Bill B</pre>	PSoC Designer から Program > Program Part をクリックすると、PSoC Programmer が自動的に 起動し 作成されたhex ファイルがロードされる。
Hex file path: をクリック C¥PSoc 1_Lab¥hello_world¥hello_world¥hello_world¥output¥hello をクリック Programming Settings Actions を読ん Acquire Mode: On On Off	ウすると書き込み開始 んで状況を確認 ウすると 通じて電源を供給
LEDの点滅と INdt Powered Connected	その間隔を確認.

Programmer が2つ以上起動しているとエラーが発生しますので、その場合は、すべての Programmerを終了して再度PSoC DesignerからProgram タブで起動してください。

main.c の変更(オプション課題)

約0.67秒で点滅するLED動作が確認できたら、 main.c を修正して点滅する周期を変更してみよう

Period を10Hz程度にしてPulse Width をDuty 50%にして LEDの点灯周期を変更してみよう

500Hz程度のPWM波形を作り、この音を聴いてみよう 音を聴くには、スピーカーやイヤホンをつなぎます

自由課題

パルスモーター制御

プログラムからレジスタの値を直接書き換えることでPWM波形を 自由に変更することができる. RCカーなどに応用できる.

PWM2PDM

外部を制御する場合にPDM (Pulse Density Modulation)を使用 するとPWMと同じ積分値でもランダムに信号波形が変化するので ノイズスペクトラムの拡散効果がある.PSoCのPRS ユーザーモ ジュールにはこの機能を実装できる

Memo

フォローアップURL

http://mikami.a.la9.jp/meiji/MEIJI.HTM

担当講師

三上廉司(みかみれんじ)

Renji_Mikami(at_mark)nifty.com (Default - Recommended)

mikami(at_mark)meiji.ac.jp (Alternative)

http://mikami.a.la9.jp/_edu.htm