
Assembly Language Guide

Document # 38-12004 Rev. *F

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

http://www.cypress.com



2 Assembly Language Guide, Document # 38-12004 Rev. *F

Copyrights

Copyrights

Copyright © 2001 - 2006 Cypress Semiconductor Corporation. All rights reserved.

PSoC® is a registered trademark and PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trade-
marks of Cypress Semiconductor Corporation (Cypress), along with Cypress® and Cypress Semiconductor™. All other
trademarks or registered trademarks referenced herein are the property of their respective owners. 

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear
in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress
does not authorize its products for use as critical components in life-support systems where a malfunction or failure may rea-
sonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems appli-
cation implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Data Sheets. Cypress believes that its
family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used.
There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our
knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guaran-
tee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is
constantly evolving. We at Cypress are committed to continuously improving the code protection features of our
products.



Assembly Language Guide, Document # 38-12004 Rev. *F 3

Contents

1. Introduction 7
1.1 Chapter Overviews ......................................................................................................7
1.2 Support ........................................................................................................................8

1.2.1 Technical Support Systems..............................................................................8
1.2.2 Product Upgrades ............................................................................................8

1.3 Documentation Conventions........................................................................................8
1.3.1 Acronyms .........................................................................................................9

2. M8C Microprocessor 11
2.1 Internal Registers.......................................................................................................11
2.2 Address Spaces.........................................................................................................12
2.3 Instruction Set Summary ...........................................................................................14
2.4 Instruction Formats ...................................................................................................16

2.4.1 One-Byte Instruction ......................................................................................16
2.4.2 Two-Byte Instructions.....................................................................................16
2.4.3 Three-Byte Instructions ..................................................................................17

2.5 Addressing Modes .....................................................................................................18
2.5.1 Source Immediate ..........................................................................................18
2.5.2 Source Direct .................................................................................................19
2.5.3 Source Indexed ..............................................................................................19
2.5.4 Destination Direct...........................................................................................20
2.5.5 Destination Indexed .......................................................................................20
2.5.6 Destination Direct Source Immediate.............................................................21
2.5.7 Destination Indexed Source Immediate .........................................................21
2.5.8 Destination Direct Source Direct ....................................................................22
2.5.9 Source Indirect Post Increment......................................................................22
2.5.10 Destination Indirect Post Increment ...............................................................23

3. PSoC Designer Assembler 25
3.1 Source File Format ....................................................................................................25

3.1.1 Labels.............................................................................................................26
3.1.2 Mnemonics.....................................................................................................27
3.1.3 Operands .......................................................................................................28
3.1.4 Comments......................................................................................................29
3.1.5 Directives .......................................................................................................30

3.2 Listing File Format .....................................................................................................30
3.3 Map File Format.........................................................................................................30
3.4 ROM File Format .......................................................................................................30
3.5 Intel® HEX File Format..............................................................................................31
3.6 Convention for Restoring Internal Registers..............................................................33
3.7 Compiling a File into a Library Module ......................................................................33



4 Assembly Language Guide, Document # 38-12004 Rev. *F

Contents

4. M8C Instruction Set 37
4.1 Add with Carry .............................................................................................. ADC.....38
4.2 Add without Carry ......................................................................................... ADD.....39
4.3 Bitwise AND.................................................................................................. AND.....40
4.4 Arithmetic Shift Left ....................................................................................... ASL.....41
4.5 Arithmetic Shift Right .................................................................................... ASR.....42
4.6 Call Function................................................................................................CALL.....43
4.7 Non-Destructive Compare ............................................................................CMP.....44
4.8 Complement Accumulator .............................................................................CPL.....45
4.9 Decrement .................................................................................................... DEC.....46
4.10 Halt ..............................................................................................................HALT.....47
4.11 Increment........................................................................................................INC.....48
4.12 Relative Table Read .................................................................................. INDEX.....49
4.13 Jump Accumulator...................................................................................... JACC.....50
4.14 Jump if Carry ................................................................................................... JC.....51
4.15 Jump..............................................................................................................JMP.....52
4.16 Jump if No Carry............................................................................................JNC.....53
4.17 Jump if Not Zero ............................................................................................ JNZ.....54
4.18 Jump if Zero......................................................................................................JZ.....55
4.19 Long Call ...................................................................................................LCALL.....56
4.20 Long Jump...................................................................................................LJMP.....57
4.21 Move.............................................................................................................MOV.....58
4.22 Move Indirect, Post-Increment to Memory..................................................... MVI.....59
4.23 No Operation ................................................................................................ NOP.....60
4.24 Bitwise OR...................................................................................................... OR.....61
4.25 Pop Stack into Register ................................................................................ POP.....62
4.26 Push Register onto Stack ...........................................................................PUSH.....63
4.27 Return............................................................................................................RET.....64
4.28 Return from Interrupt ....................................................................................RETI.....65
4.29 Rotate Left through Carry ..............................................................................RLC.....66
4.30 Absolute Table Read ................................................................................. ROMX.....67
4.31 Rotate Right through Carry........................................................................... RRC.....68
4.32 Subtract with Borrow .....................................................................................SBB.....69
4.33 Subtract without Borrow ............................................................................... SUB.....70
4.34 Swap.......................................................................................................... SWAP.....71
4.35 System Supervisor Call ................................................................................ SSC.....72
4.36 Test for Mask................................................................................................. TST.....73
4.37 Bitwise XOR ................................................................................................. XOR.....74

5. Assembler Directives 75
5.1 Area ............................................................................................................ AREA.....76

5.1.1 Code Compressor and the AREA Directive ...................................................77
5.2 NULL Terminated ASCII String ................................................................. ASCIZ.....78
5.3 RAM Block in Bytes ....................................................................................... BLK.....79
5.4 RAM Block in Words...................................................................................BLKW.....80
5.5 Define Byte ......................................................................................................DB.....81
5.6 Define Floating-point Number.......................................................................... DF.....82
5.7 Define ASCII String .........................................................................................DS.....83
5.8 Define UNICODE String ............................................................................... DSU.....84
5.9 Define Word, Big Endian Ordering .................................................................DW.....85
5.10 Define Word, Little Endian Ordering.............................................................DWL.....86
5.11 Equate Label ................................................................................................ EQU.....87



Assembly Language Guide, Document # 38-12004 Rev. *F 5

Contents

5.12 Export ....................................................................................................EXPORT.....88
5.13 Conditional Source ................................................................... IF, ELSE, ENDIF.....89
5.14 Include Source File ............................................................................... INCLUDE.....90
5.15 Prevent Code Compression of Data .............................LITERAL, .ENDLITERAL.....91
5.16 Macro Definition..........................................................................MACRO, ENDM.....92
5.17 Area Origin................................................................................................... ORG.....93
5.18 Section for Dead-Code Elimination........................... .SECTION, .ENDSECTION.....94
5.19 Suspend Code Compressor .....................................................................OR F,0.....95
5.20 Resume Code Compressor ................................................................. ADD SP,0.....95

6. Builds and Error Messages 97
6.1 Assemble and Build ...................................................................................................97
6.2 Linker Operations ......................................................................................................97
6.3 Code Compressor and Dead-Code Elimination Error Messages ..............................98

Appendix A. Reference Tables 99
A.1 Assembly Syntax Expressions...................................................................................99
A.2 Operand Constant Formats. ......................................................................................99
A.3 Assembler Directives Summary...............................................................................100
A.4 ASCII Code Table....................................................................................................101
A.5 Instruction Set Summary ........................................................................................102

Index  105

Revision History 109



6 Assembly Language Guide, Document # 38-12004 Rev. *F

Contents



Assembly Language Guide, Document # 38-12004 Rev. *F 7

1. Introduction

The PSoC Designer Assembly Language Guide documents the assembly language instruction set
for the M8C microcontroller as well as other compatible assembly practices.

The PSoC Designer Integrated Development Environment (IDE) software is available free of charge
and supports development in assembly language. For customers interested in developing in C, a
low-cost compiler is available. Please contact your local distributor if you are interested in purchas-
ing the C Compiler for PSoC Designer. For more information about developing in C for the PSoC
device, please read the PSoC Designer C Language Compiler Guide available at the Cypress web
site at www.cypress.com.

1.1 Chapter Overviews

Table 1-1.  Overview of the Assembly Language Guide

Chapter Description
Introduction
(on page 7)

Describes the purpose of this guide, overviews each chapter, supplies product 
support and upgrade information, and lists documentation conventions.

M8C Microprocessor
(on page 11)

Discusses the microprocessor and explains address spaces, instruction format, 
and destination of instruction results. It also lists all addressing modes and pro-
vides examples of each.

PSoC Designer Assembler
(on page 25)

Provides assembly language source syntax including labels, mnemonics, oper-
ands, comments, and directives. Describes the various file formats created by 
the Assembler, along with the convention for restoring internal registers and 
compiling a file into a library module.

M8C Instruction Set
(on page 37)

Provides a detailed list of all M8C instructions. Information about individual M8C 
instructions is also available via PSoC Designer Online Help.

Assembler Directives
(on page 75)

Provides a detailed list of all Assembler directives.

Builds and Error Messages
(on page 97)

Supplies several lists of assembler-related errors and warnings, along with their 
possible solutions.

Appendix A 
Reference Tables Appendix
(on page 99)

Serves as a quick reference to the M8C instruction set, and assembler directives 
and syntax expressions, along with an ASCII code table.

http://www.cypress.com


8 Assembly Language Guide, Document # 38-12004 Rev. *F

Introduction

1.2 Support
Free support for PSoC Designer is available online, just click on PSoC Mixed-Signal Controllers then
Technical Support. Resources include Training Seminars, Discussion Forums, Application Notes,
PSoC Consultants, TightLink Technical Support Email/Knowledge Base, and Application Support
Technicians.

Before utilizing the Cypress support services, know the version of PSoC Designer installed on your
system. To quickly determine the version, build, or service pack of your current installation of PSoC
Designer, click Help > About PSoC Designer.

1.2.1 Technical Support Systems

Enter a technical support request in this system with a guaranteed response time of four hours at
http://www.cypress.com/support/login.cfm 

1.2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC software free of charge.
You can order upgrades from your distributor on CD-ROM or download them directly from
www.cypress.com under Software and Drivers. Critical updates to system documentation are also
available on the Cypress web site.

1.3 Documentation Conventions

The following are easily identifiable conventions used throughout this guide.

Table 1-2.  Documentation Conventions

Convention Usage

Courier New
Displays file locations, user entered text, and source code:
C:\ ...cd\icc\

Italics
Displays file names and reference documentation:
Read about the sourcefile.hex file in the PSoC Designer Guide.

[Bracketed, Bold]
Displays keyboard commands in procedures:
[Enter] or [Ctrl] [C]

File > Open
Represents menu paths:
File > Open > New Project

Bold
Displays commands, menu paths, and icon names in procedures:
Click the File icon and then click Open.

Text in gray boxes Presents cautions or unique functionality of the product.

http://www.cypress.com/support/login.cfm
http://www.cypress.com/support/login.cfm
http://www.cypress.com


Assembly Language Guide, Document # 38-12004 Rev. *F 9

Introduction

1.3.1 Acronyms

The following are acronyms used throughout this guide.

Table 1-3.  Acronyms

Acronym Description
A CPU_A register (accumulator)
CF carry flag
F CPU_F register (flags ZF, CF, and others)

GIE global enable interrupt
IDE integrated development environment
NOP no operation

PC CPU_PC register (program counter)
POR power-on-reset
RAM random access memory

REG register space
ROM read only memory
SP CPU_SP register (stack pointer)

SROM supervisory read only memory
SSC supervisory system call
WDR watchdog timer reset

X CPU_X register (index)
XRES external reset
ZF zero flag



10 Assembly Language Guide, Document # 38-12004 Rev. *F

Introduction



Assembly Language Guide, Document # 38-12004 Rev. *F 11

2. M8C Microprocessor

This chapter covers internal M8C registers, address spaces, instruction summary and formats, and
addressing modes for the M8C microprocessor. The M8C is a 4 MIPS 8-bit Harvard architecture
microprocessor. Code selectable processor clock speeds from 93.7 kHz to 24 MHz allow the M8C to
be tuned to a particular application’s performance and power requirements. The M8C supports a rich
instruction set which allows for efficient low-level language support. For a detailed description of all
M8C instructions, refer to the M8C Instruction Set chapter on page 37.

2.1 Internal Registers
The M8C has five internal registers that are used in program execution:

■ Accumulator (A)

■ Index (X)

■ Program Counter (PC)

■ Stack Pointer (SP)

■ Flags (F)

All of the internal M8C registers are 8 bits in width, except for the PC (CPU_PC register) which is 16
bits wide. Upon reset, A, X, PC, and SP are reset to 0x00. The Flag register CPU_F (F) is reset to
0x02 indicating that the Z flag is set.

With each stack operation, the SP is automatically incremented or decremented so that it always
points at the next stack byte in Random Access Memory (RAM). If the last byte in the stack is at
address 0xFF in RAM, the Stack Pointer (CPU_SP or SP) will wrap to RAM address 0x00. It is the
firmware developer’s responsibility to ensure that the stack does not overlap with user-defined vari-
ables in RAM.

As shown in Table 2-1, the Flag register has 6 of 8 bits defined. The PgMode and XIO bits are used
to control the active register and RAM address spaces in the PSoC device. The C and Z bits are the
Carry and Zero flags respectively. These flags are affected by arithmetic, logical, and shift opera-
tions provided in the M8C instruction. The GIE bit is the Global Interrupt Enable. When set, this bit
allows the M8C to be interrupted by the PSoC device’s interrupt controller.

Table 2-1.  M8C Internal Flag (F) Register (CPU_F)

Bits 7 6 5 4 3 2 1 0
Name PgMode[1:0] XIO C Z GIE



12 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Microprocessor

With the exception of the CPU_F register, the M8C internal registers are not accessible via an
explicit register address. PSoC parts in the CY8C25xxx and CY8C26xxx device family do not have a
readable CPU_F register. The OR F, expr and AND F, expr instructions must be used to set
and clear CPU_F register bits. The internal M8C registers are accessed using special instructions
such as: 

■ MOV A, expr

■ MOV X, expr

■ SWAP A, SP

■ OR F, expr

■ JMP

The CPU_F register may be read by using address 0xF7 in any register bank, except in CY8C25xxx
and CY8C26xxx devices. 

2.2 Address Spaces
The M8C microcontroller has three address spaces: ROM, RAM, and registers. The Read Only
Memory (ROM) address space is accessed via its own address and data bus. Figure 2-1 illustrates
the arrangement of the PSoC device address spaces.

The ROM address space is composed of the Supervisory ROM and the on-chip Flash program
store. Flash is organized into 64-byte blocks. The user need not be concerned with program store
page boundaries, because the M8C automatically increments the 16-bit CPU_PC register (PC) on
every instruction making the block boundaries invisible to user code. Instructions occurring on a 256-
byte Flash page boundary (with the exception of jump instructions) incur an extra M8C clock cycle
because the upper byte of the Program Counter (PC) is incremented.

The register address space is used to configure the PSoC device’s programmable blocks. It consists
of two banks of 256 bytes each. To switch between banks, the XIO bit in the Flag register is set or
cleared (set for Bank1 = Configuration Space, cleared for Bank0 = User Space). The common con-
vention is to leave the bank set to Bank0 (XIO cleared), switch to Bank1 as needed (set XIO), then
switch back to Bank0.

RAM is broken into 256-byte pages. For PSoC devices with 256 bytes of RAM or less, the program
stack is stored in RAM Page 0. For PSoC devices with 512 bytes of RAM or more, the stack is con-
strained to the last RAM page. For information on RAM configuration in a specific device, refer to the
device-specific data sheet.



Assembly Language Guide, Document # 38-12004 Rev. *F 13

M8C Microprocessor

Figure 2-1.  M8C Microcontroller Address Spaces

Registers RAM ROM

Bank 0
256 Bytes

Bank 1
256 Bytes

Page 0
256 Bytes

SROM

Flash
M x 64

Byte Blocks

LEGEND
M: Total number of Flash bocks in device
n: Total number of RAM pages minus 1

in device
XIO: Register bank selection
IOR: Register read
IOW: Register write
MR: Memory read
MW: Memory write

MW MRIOW IOR XIO DB[7:0]

DA[7:0]

ID[7:0] PC[15:0]

M8CA

F

SP

PC

X

PAGE

Page 1
256 Bytes

Page n
256 Bytes



14 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Microprocessor

2.3 Instruction Set Summary
The instruction set is summarized in both Table 2-2 and Table 2-3 (in numeric and mnemonic order,
respectively), and serves as a quick reference. 

Table 2-2.  Instruction Set Summary Sorted Numerically by Opcode

O
p

co
d

e 
H

ex

C
yc

le
s

B
yt

es Instruction For-
mat Flags

O
p

co
d

e 
H

ex

C
yc

le
s

B
yt

es Instruction Format Flags

O
p

co
d

e 
H

ex

C
yc

le
s

B
yt

es Instruction Format Flags

00 15 1 SSC 2D 8 2 OR [X+expr], A Z 5A 5 2 MOV [expr], X

01 4 2 ADD A, expr C, Z 2E 9 3 OR [expr], expr Z 5B 4 1 MOV A, X Z

02 6 2 ADD A, [expr] C, Z 2F 10 3 OR [X+expr], expr Z 5C 4 1 MOV X, A

03 7 2 ADD A, [X+expr] C, Z 30  9 1 HALT 5D 6 2 MOV A, reg[expr] Z

04 7 2 ADD [expr], A C, Z 31 4 2 XOR A, expr Z 5E 7 2 MOV A, reg[X+expr] Z

05 8 2 ADD [X+expr], A C, Z 32 6 2 XOR A, [expr] Z 5F 10 3 MOV [expr], [expr]

06 9 3 ADD [expr], expr C, Z 33 7 2 XOR A, [X+expr] Z 60 5 2 MOV reg[expr], A

07 10 3 ADD [X+expr], expr C, Z 34 7 2 XOR [expr], A Z 61 6 2 MOV reg[X+expr], A

08  4 1 PUSH A 35 8 2 XOR [X+expr], A Z 62 8 3 MOV reg[expr], expr

09 4 2 ADC A, expr C, Z 36 9 3 XOR [expr], expr Z 63 9 3 MOV reg[X+expr], expr

0A 6 2 ADC A, [expr] C, Z 37 10 3 XOR [X+expr], expr Z 64  4 1 ASL A C, Z

0B 7 2 ADC A, [X+expr] C, Z 38  5 2 ADD SP, expr 65  7 2 ASL [expr] C, Z

0C 7 2 ADC [expr], A C, Z 39  5 2 CMP A, expr

if (A=B) Z=1

if (A<B) C=1

66  8 2 ASL [X+expr] C, Z

0D 8 2 ADC [X+expr], A C, Z 3A  7 2 CMP A, [expr] 67  4 1 ASR A C, Z

0E 9 3 ADC [expr], expr C, Z 3B  8 2 CMP A, [X+expr] 68  7 2 ASR [expr] C, Z

0F 10 3 ADC [X+expr], expr C, Z 3C  8 3 CMP [expr], expr 69  8 2 ASR [X+expr] C, Z

10  4 1 PUSH X 3D  9 3 CMP [X+expr], expr 6A  4 1 RLC A C, Z

11  4 2 SUB A, expr C, Z 3E 10 2 MVI A, [ [expr]++ ] Z 6B  7 2 RLC [expr] C, Z

12  6 2 SUB A, [expr] C, Z 3F 10 2 MVI [ [expr]++ ], A 6C  8 2 RLC [X+expr] C, Z

13  7 2 SUB A, [X+expr] C, Z 40 4 1 NOP 6D  4 1 RRC A C, Z

14  7 2 SUB [expr], A C, Z 41  9 3 AND reg[expr], expr Z 6E  7 2 RRC [expr] C, Z

15  8 2 SUB [X+expr], A C, Z 42 10 3 AND reg[X+expr], expr Z 6F  8 2 RRC [X+expr] C, Z

16  9 3 SUB [expr], expr C, Z 43 9 3 OR reg[expr], expr Z 70  4 2 AND F, expr C, Z

17 10 3 SUB [X+expr], expr C, Z 44 10 3 OR reg[X+expr], expr Z 71 4 2 OR F, expr C, Z

18  5 1 POP A Z 45  9 3 XOR reg[expr], expr Z 72  4 2 XOR F, expr C, Z

19  4 2 SBB A, expr C, Z 46 10 3 XOR reg[X+expr], expr Z 73  4 1 CPL A Z

1A  6 2 SBB A, [expr] C, Z 47  8 3 TST [expr], expr Z 74  4 1 INC A C, Z

1B  7 2 SBB A, [X+expr] C, Z 48  9 3 TST [X+expr], expr Z 75  4 1 INC X C, Z

1C  7 2 SBB [expr], A C, Z 49  9 3 TST reg[expr], expr Z 76  7 2 INC [expr] C, Z

1D  8 2 SBB [X+expr], A C, Z 4A 10 3 TST reg[X+expr], expr Z 77  8 2 INC [X+expr] C, Z

1E  9 3 SBB [expr], expr C, Z 4B  5 1 SWAP A, X Z 78  4 1 DEC A C, Z

1F 10 3 SBB [X+expr], expr C, Z 4C  7 2 SWAP A, [expr] Z 79  4 1 DEC X C, Z

20  5 1 POP X 4D  7 2 SWAP X, [expr] 7A  7 2 DEC [expr] C, Z

21  4 2 AND A, expr Z 4E  5 1 SWAP A, SP Z 7B  8 2 DEC [X+expr] C, Z

22  6 2 AND A, [expr] Z 4F 4 1 MOV X, SP 7C 13 3 LCALL

23  7 2 AND A, [X+expr] Z 50 4 2 MOV A, expr Z 7D 7 3 LJMP

24  7 2 AND [expr], A Z 51 5 2 MOV A, [expr] Z 7E 10 1 RETI C, Z

25  8 2 AND [X+expr], A Z 52 6 2 MOV A, [X+expr] Z 7F  8 1 RET

26  9 3 AND [expr], expr Z 53 5 2 MOV [expr], A 8x  5 2 JMP

27 10 3 AND [X+expr], expr Z 54 6 2 MOV [X+expr], A 9x 11 2 CALL

28 11 1 ROMX Z 55 8 3 MOV [expr], expr Ax 5 2 JZ

29 4 2 OR A, expr Z 56 9 3 MOV [X+expr], expr Bx 5 2 JNZ

2A 6 2 OR A, [expr] Z 57 4 2 MOV X, expr Cx 5 2 JC

2B 7 2 OR A, [X+expr] Z 58 6 2 MOV X, [expr] Dx 5 2 JNC

2C 7 2 OR [expr], A Z 59 7 2 MOV X, [X+expr] Ex 7 2 JACC

Note 1  Interrupt acknowledge to Interrupt Vector table = 13 cycles. Fx 13 2 INDEX Z

Note 2  The number of cycles required by an instruction is increased by one for instructions that 
span 256 byte page boundaries in the Flash memory space.



Assembly Language Guide, Document # 38-12004 Rev. *F 15

M8C Microprocessor

 
Table 2-3.  Instruction Set Summary Sorted Alphabetically by Mnemonic

O
p

co
d

e 
H

ex

C
yc

le
s

B
yt

es Instruction Format Flags

O
p

co
d

e 
H

ex

C
yc

le
s

B
yt

es Instruction Format Flags

O
p

co
d

e 
H

ex

C
yc

le
s

B
yt

es Instruction Format Flags

09 4 2 ADC A, expr C, Z 76   7 2 INC [expr] C, Z 20  5 1 POP X

0A 6 2 ADC A, [expr] C, Z 77  8 2 INC [X+expr] C, Z 18  5 1 POP A Z

0B 7 2 ADC A, [X+expr] C, Z Fx 13 2 INDEX Z 10  4 1 PUSH X

0C 7 2 ADC [expr], A C, Z Ex 7 2 JACC 08  4 1 PUSH A

0D 8 2 ADC [X+expr], A C, Z Cx 5 2 JC 7E 10 1 RETI C, Z

0E 9 3 ADC [expr], expr C, Z 8x  5 2 JMP 7F  8 1 RET

0F 10 3 ADC [X+expr], expr C, Z Dx 5 2 JNC 6A  4 1 RLC A C, Z

01 4 2 ADD A, expr C, Z Bx 5 2 JNZ 6B  7 2 RLC [expr] C, Z

02 6 2 ADD A, [expr] C, Z Ax 5 2 JZ 6C  8 2 RLC [X+expr] C, Z

03 7 2 ADD A, [X+expr] C, Z 7C 13 3 LCALL 28 11 1 ROMX Z

04 7 2 ADD [expr], A C, Z 7D 7 3 LJMP 6D  4 1 RRC A C, Z

05 8 2 ADD [X+expr], A C, Z 4F 4 1 MOV X, SP 6E  7 2 RRC [expr] C, Z

06 9 3 ADD [expr], expr C, Z 50 4 2 MOV A, expr Z 6F  8 2 RRC [X+expr] C, Z

07 10 3 ADD [X+expr], expr C, Z 51 5 2 MOV A, [expr] Z 19  4 2 SBB A, expr C, Z

38  5 2 ADD SP, expr 52 6 2 MOV A, [X+expr] Z 1A  6 2 SBB A, [expr] C, Z

21   4 2 AND A, expr Z 53 5 2 MOV [expr], A 1B  7 2 SBB A, [X+expr] C, Z

22   6 2 AND A, [expr] Z 54 6 2 MOV [X+expr], A 1C  7 2 SBB [expr], A C, Z

23   7 2 AND A, [X+expr] Z 55 8 3 MOV [expr], expr 1D  8 2 SBB [X+expr], A C, Z

24   7 2 AND [expr], A Z 56 9 3 MOV [X+expr], expr 1E  9 3 SBB [expr], expr C, Z

25   8 2 AND [X+expr], A Z 57 4 2 MOV X, expr 1F 10 3 SBB [X+expr], expr C, Z

26   9 3 AND [expr], expr Z 58 6 2 MOV X, [expr] 00 15 1 SSC

27 10 3 AND [X+expr], expr Z 59 7 2 MOV X, [X+expr] 11  4 2 SUB A, expr C, Z

70   4 2 AND F, expr C, Z 5A 5 2 MOV [expr], X 12  6 2 SUB A, [expr] C, Z

41   9 3 AND reg[expr], expr Z 5B 4 1 MOV A, X Z 13  7 2 SUB A, [X+expr] C, Z

42 10 3 AND reg[X+expr], expr Z 5C 4 1 MOV X, A 14  7 2 SUB [expr], A C, Z

64   4 1 ASL A C, Z 5D 6 2 MOV A, reg[expr] Z 15  8 2 SUB [X+expr], A C, Z

65   7 2 ASL [expr] C, Z 5E 7 2 MOV A, reg[X+expr] Z 16  9 3 SUB [expr], expr C, Z

66   8 2 ASL [X+expr] C, Z 5F 10 3 MOV [expr], [expr] 17 10 3 SUB [X+expr], expr C, Z

67   4 1 ASR A C, Z 60 5 2 MOV reg[expr], A 4B  5 1 SWAP A, X Z

68   7 2 ASR [expr] C, Z 61 6 2 MOV reg[X+expr], A 4C  7 2 SWAP A, [expr] Z

69   8 2 ASR [X+expr] C, Z 62 8 3 MOV reg[expr], expr 4D  7 2 SWAP X, [expr]

9x 11 2 CALL 63 9 3 MOV reg[X+expr], expr 4E  5 1 SWAP A, SP Z

39   5 2 CMP A, expr
if (A=B) 
Z=1

if (A<B) 
C=1

3E 10 2 MVI A, [ [expr]++ ] Z 47  8 3 TST [expr], expr Z

3A   7 2 CMP A, [expr] 3F 10 2 MVI [ [expr]++ ], A 48  9 3 TST [X+expr], expr Z

3B   8 2 CMP A, [X+expr] 40 4 1 NOP 49  9 3 TST reg[expr], expr Z

3C   8 3 CMP [expr], expr 29 4 2 OR A, expr Z 4A 10 3 TST reg[X+expr], expr Z

3D   9 3 CMP [X+expr], expr 2A 6 2 OR A, [expr] Z 72  4 2 XOR F, expr C, Z

73   4 1 CPL A Z 2B 7 2 OR A, [X+expr] Z 31 4 2 XOR A, expr Z

78   4 1 DEC A C, Z 2C 7 2 OR [expr], A Z 32 6 2 XOR A, [expr] Z

79   4 1 DEC X C, Z 2D 8 2 OR [X+expr], A Z 33 7 2 XOR A, [X+expr] Z

7A   7 2 DEC [expr] C, Z 2E 9 3 OR [expr], expr Z 34 7 2 XOR [expr], A Z

7B   8 2 DEC [X+expr] C, Z 2F 10 3 OR [X+expr], expr Z 35 8 2 XOR [X+expr], A Z

30  9 1 HALT 43 9 3 OR reg[expr], expr Z 36 9 3 XOR [expr], expr Z

74   4 1 INC A C, Z 44 10 3 OR reg[X+expr], expr Z 37 10 3 XOR [X+expr], expr Z

75   4 1 INC X C, Z 71 4 2 OR F, expr C, Z 45  9 3 XOR reg[expr], expr Z

Note 1  Interrupt acknowledge to Interrupt Vector table = 13 cycles. 46 10 3 XOR reg[X+expr], expr Z

Note 2  The number of cycles required by an instruction is increased by one for instructions 
that span 256 byte page boundaries in the Flash memory space.



16 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Microprocessor

2.4 Instruction Formats 
The M8C has a total of seven instruction formats which use instruction lengths of one, two, and three
bytes. All instruction bytes are fetched from the program memory (Flash), using an address and data
bus that are independent from the address and data buses used for register and RAM access.

While examples of instructions are given in this section, refer to the M8C Instruction Set chapter on
page 37 for detailed information on individual instructions.

2.4.1 One-Byte Instruction

Many instructions, such as some of the MOV instructions, have single-byte forms, because they do
not use an address or data as an operand. As shown in Table 2-4, one-byte instructions use an 8-bit
opcode. The set of one-byte instructions can be divided into four categories, according to where their
results are stored.

The first category of one-byte instructions are those that do not update any registers or RAM. Only
the one-byte no operation (NOP) and supervisory system call (SSC) instructions fit this category.
While the program counter is incremented as these instructions execute, they do not cause any
other internal M8C registers to be updated, nor do these instructions directly affect the register
space or the RAM address space. The SSC instruction will cause SROM code to run, which will
modify RAM and the M8C internal registers.

The second category has only the two PUSH instructions in it. The PUSH instructions are unique,
because they are the only one-byte instructions that cause a RAM address to be modified. These
instructions automatically increment the CPU_SP register (SP).

The third category has only the HALT instruction in it. The HALT instruction is unique, because it is
the only one-byte instruction that causes a user register to be modified. The HALT instruction modi-
fies user register space address FFh (CPU_SCR register).

The final category for one-byte instructions are those that cause updates of the internal M8C regis-
ters. This category holds the largest number of instructions: ASL, ASR, CPL, DEC, INC, MOV, POP,
RET, RETI, RLC, ROMX, RRC, SWAP. These instructions can cause the CPU_A, CPU_X, and
CPU_SP registers, or SRAM to update.

2.4.2 Two-Byte Instructions

The majority of M8C instructions are two bytes in length. While these instructions can be divided into
categories identical to the one-byte instructions, this would not provide a useful distinction between
the three two-byte instruction formats that the M8C uses. 

Table 2-4.  One-Byte Instruction Format

Byte 0

8-Bit Opcode

Table 2-5.  Two-Byte Instruction Formats

Byte 0 Byte 1

4-Bit 
Opcode

12-Bit Relative Address

8-Bit Opcode 8-Bit Data

8-Bit Opcode 8-Bit Address



Assembly Language Guide, Document # 38-12004 Rev. *F 17

M8C Microprocessor

The first two-byte instruction format, shown in the first row of Table 2-5, is used by short jumps and
calls: CALL, JMP, JACC, INDEX, JC, JNC, JNZ, JZ. This instruction format uses only four bits for the
instruction opcode, leaving 12 bits to store the relative destination address in a two’s-complement
form. These instructions can change program execution to an address relative to the current
address by -2048 or +2047.

The second two-byte instruction format, shown in the second row of Table 2-5, is used by instruc-
tions that employ the Source Immediate addressing mode (see “Source Immediate” on page 18).
The destination for these instructions is an internal M8C register, while the source is a constant
value. An example of this type of instruction would be ADD A, 7. 

The third two-byte instruction format, shown in the third row of Table 2-5, is used by a wide range of
instructions and addressing modes. The following is a list of the addressing modes that use this third
two-byte instruction format:

■ Source Direct (ADD A, [7])

■ Source Indexed (ADD A, [X+7])

■ Destination Direct (ADD [7], A)

■ Destination Indexed (ADD [X+7], A)

■ Source Indirect Post Increment (MVI A, [7])

■ Destination Indirect Post Increment (MVI [7], A)

For more information on addressing modes see “Addressing Modes” on page 18.

2.4.3 Three-Byte Instructions

The three-byte instruction formats are the second most prevalent instruction formats. These instruc-
tions need three bytes because they either move data between two addresses in the user-accessi-
ble address space (registers and RAM) or they hold 16-bit absolute addresses as the destination of
a long jump or long call. 

The first instruction format, shown in the first row of Table 2-6, is used by the LJMP and LCALL
instructions. These instructions change program execution unconditionally to an absolute address.
The instructions use an 8-bit opcode, leaving room for a 16-bit destination address.

The second three-byte instruction format, shown in the second row of Table 2-6, is used by the fol-
lowing two addressing modes:

■ Destination Direct Source Immediate (ADD [7], 5)

■ Destination Indexed Source Immediate (ADD [X+7], 5)

The third three-byte instruction format, shown in the third row of Table 2-6, is for the Destination
Direct Source Direct addressing mode, which is used by only one instruction. This instruction format
uses an 8-bit opcode followed by two 8-bit addresses. The first address is the destination address in
RAM, while the second address is the source address in RAM. The following is an example of this
instruction: 

MOV [7], [5]

Table 2-6.  Three-Byte Instruction Formats

Byte 0 Byte 1 Byte 2

8-Bit Opcode 16-Bit Address (MSB, LSB)

8-Bit Opcode 8-Bit Address 8-Bit Data

8-Bit Opcode 8-Bit Address 8-Bit Address



18 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Microprocessor

2.5 Addressing Modes
The M8C has ten addressing modes:

■ “Source Immediate” on page 18.

■ “Source Direct” on page 19.

■ “Source Indexed” on page 19.

■ “Destination Direct” on page 20.

■ “Destination Indexed” on page 20.

■ “Destination Direct Source Immediate” on page 21.

■ “Destination Indexed Source Immediate” on page 21.

■ “Destination Direct Source Direct” on page 22.

■ “Source Indirect Post Increment” on page 22.

■ “Destination Indirect Post Increment” on page 23.

2.5.1 Source Immediate

For these instructions, the source value is stored in operand 1 of the instruction. The result of these
instructions is placed in either the M8C CPU_A, CPU_F, or CPU_X register as indicated by the
instruction’s opcode. All instructions using the Source Immediate addressing mode are two bytes in
length.

Source Immediate Examples:

Table 2-7.  Source Immediate

Opcode Operand 1

Instruction Immediate Value

Source Code Machine Code Comments
ADD A, 7 01 07 The immediate value 7 is added to the Accumulator. 

The result is placed in the Accumulator.
MOV X, 8 57 08 The immediate value 8 is moved into the CPU_X 

register.
AND F, 9 70 09 The immediate value of 9 is logically AND’ed with 

the CPU_F register and the result is placed in the 
CPU_F register.



Assembly Language Guide, Document # 38-12004 Rev. *F 19

M8C Microprocessor

2.5.2 Source Direct

For these instructions, the source address is stored in operand 1 of the instruction. During instruction
execution, the address will be used to retrieve the source value from RAM or register address space.
The result of these instructions is placed in either the M8C CPU_A or CPU_X register as indicated
by the instruction’s opcode. All instructions using the Source Direct addressing mode are two bytes
in length.

Source Direct Examples:

2.5.3 Source Indexed

For these instructions, the source offset from the CPU_X register is stored in operand 1 of the
instruction. During instruction execution, the current CPU_X register value is added to the signed off-
set, to determine the address of the source value in RAM or register address space. The result of
these instructions is placed in either the M8C CPU_A or CPU_X register as indicated by the instruc-
tion’s opcode. All instructions using the Source Indexed addressing mode are two bytes in length.

Source Indexed Examples:

Table 2-8.  Source Direct

Opcode Operand 1

Instruction Source Address

Source Code Machine Code Comments
ADD A, [7] 02 07 The value in memory at address 7 is added to the 

Accumulator and the result is placed into the Accu-
mulator.

MOV A, REG[8] 5D 08 The value in the register space at address 8 is 
moved into the Accumulator.

Table 2-9.  Source Indexed

Opcode Operand 1

Instruction Source Index

Source Code Machine Code Comments
ADD A, [X+7] 03 07 The value in memory at address X+7 is added to the 

Accumulator. The result is placed in the Accumula-
tor.

MOV X, [X+8] 59 08 The value in RAM at address X+8 is moved into the 
CPU_X register.



20 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Microprocessor

2.5.4 Destination Direct

For these instructions, the destination address is stored in the machine code of the instruction. The
source for the operation is either the M8C CPU_A or CPU_X register as indicated by the instruc-
tion’s opcode. All instructions using the Destination Direct addressing mode are two bytes in length.

Destination Direct Examples:

2.5.5 Destination Indexed

For these instructions, the destination offset from the CPU_X register is stored in the machine code
for the instruction. The source for the operation is either the M8C CPU_A register or an immediate
value as indicated by the instruction’s opcode. All instructions using the Destination Indexed
addressing mode are two bytes in length.

Destination Indexed Example:

Table 2-10.  Destination Direct

Opcode Operand 1

Instruction Destination Address

Source Code Machine Code Comments
ADD [7], A 04 07 The value in the Accumulator is added to memory at 

address 7. The result is placed in memory at 
address 7. The Accumulator is unchanged.

MOV REG[8], A 60 08 The Accumulator value is moved to register space at 
address 8. The Accumulator is unchanged.

Table 2-11.  Destination Indexed

Opcode Operand 1

Instruction Destination Index

Source Code Machine Code Comments
ADD [X+7], A 05 07 The value in memory at address X+7 is added to the 

Accumulator. The result is placed in memory at 
address X+7. The Accumulator is unchanged.



Assembly Language Guide, Document # 38-12004 Rev. *F 21

M8C Microprocessor

2.5.6 Destination Direct Source Immediate

For these instructions, the destination address is stored in operand 1 of the instruction. The source
value is stored in operand 2 of the instruction. All instructions using the Destination Direct Source
Immediate addressing mode are three bytes in length.

Destination Direct Source Immediate Examples:

2.5.7 Destination Indexed Source Immediate

For these instructions, the destination offset from the CPU_X register is stored in operand 1 of the
instruction. The source value is stored in operand 2 of the instruction. All instructions using the Des-
tination Indexed Source Immediate addressing mode are three bytes in length.

Destination Indexed Source Immediate Examples:

Table 2-12.  Destination Direct Source Immediate

Opcode Operand 1 Operand 2

Instruction Destination Address Immediate Value

Source Code Machine Code Comments
ADD [7], 5 06 07 05 The value in memory at address 7 is added to the 

immediate value 5. The result is placed in memory 
at address 7.

MOV REG[8], 6 62 08 06 The immediate value 6 is moved into register space 
at address 8.

Table 2-13.  Destination Indexed Source Immediate

Opcode Operand 1 Operand 2

Instruction Destination Index Immediate Value

Source Code Machine Code Comments
ADD [X+7], 5 07 07 05 The value in memory at address X+7 is added to the 

immediate value 5. The result is placed in memory 
at address X+7.

MOV REG[X+8], 6 63 08 06 The immediate value 6 is moved into the register 
space at address X+8.



22 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Microprocessor

2.5.8 Destination Direct Source Direct

Only one instruction uses this addressing mode. The destination address is stored in operand 1 of
the instruction. The source address is stored in operand 2 of the instruction. The instruction using
the Destination Direct Source Direct addressing mode is three bytes in length.

Destination Direct Source Direct Example:

2.5.9 Source Indirect Post Increment

Only one instruction uses this addressing mode. The source address stored in operand 1 is actually
the address of a pointer. During instruction execution, the pointer’s current value is read to deter-
mine the address in RAM where the source value is found. The pointer’s value is incremented after
the source value is read. For PSoC microcontrollers with more than 256 bytes of RAM, the Data
Page Read (MVR_PP) register is used to determine which RAM page to use with the source
address. Therefore, values from pages other than the current page can be retrieved without chang-
ing the Current Page Pointer (CUR_PP). The pointer is always read from the current RAM page. For
information on the MVR_PP and CUR_PP registers, see the Register Reference chapter in the
PSoC Technical Reference Manual. The instruction using the Source Indirect Post Increment
addressing mode is two bytes in length. 

Source Indirect Post Increment Example:

Table 2-14.  Destination Direct Source Direct

Opcode Operand 1 Operand 2

Instruction Destination Address Source Address

Source Code Machine Code Comments
MOV [7], [8] 5F 07 08 The value in memory at address 8 is moved to 

memory at address 7.

Table 2-15.  Source Indirect Post Increment

Opcode Operand 1

Instruction Source Address Pointer

Source Code Machine Code Comments
MVI A, [8] 3E 08 The value in memory at address 8 (the indirect 

address) points to a memory location in RAM. The 
value at the memory location, pointed to by the indi-
rect address, is moved into the Accumulator. The 
indirect address, at address 8 in memory, is then 
incremented.



Assembly Language Guide, Document # 38-12004 Rev. *F 23

M8C Microprocessor

2.5.10 Destination Indirect Post Increment

Only one instruction uses this addressing mode. The destination address stored in operand 1 is
actually the address of a pointer. During instruction execution, the pointer’s current value is read to
determine the destination address in RAM where the Accumulator’s value is stored. The pointer’s
value is incremented, after the value is written to the destination address. For PSoC microcontrollers
with more than 256 bytes of RAM, the Data Page Write (MVW_PP) register is used to determine
which RAM page to use with the destination address. Therefore, values can be stored in pages other
than the current page without changing the Current Page Pointer (CUR_PP). The pointer is always
read from the current RAM page. For information on the MVR_PP and CUR_PP registers, see the
Register Reference chapter in the PSoC Technical Reference Manual. The instruction using the
Destination Indirect Post Increment addressing mode is two bytes in length. 

Destination Indirect Post Increment Example: 

Table 2-16.  Destination Indirect Post Increment

Opcode Operand 1

Instruction Destination Address Pointer

Source Code Machine Code Comments
MVI [8], A 3F 08 The value in memory at address 8 (the indirect 

address) points to a memory location in RAM. The 
Accumulator value is moved into the memory loca-
tion pointed to by the indirect address. The indirect 
address, at address 8 in memory, is then incre-
mented.



24 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Microprocessor



Assembly Language Guide, Document # 38-12004 Rev. *F 25

3. PSoC Designer Assembler

This chapter details the information needed to use the PSoC Designer Assembler. For information
on generating source code in PSoC Designer, see the PSoC Designer IDE Guide.

Assembly language is a low-level language. This means its structure is not like a human language.
By comparison, ‘C’ is a high-level language with structures close to those used by human lan-
guages. Even though assembly is a low-level language, it is an abstraction created to make pro-
gramming hardware easier for humans. Therefore, this abstraction must be eliminated before an
input, in a form native to the microcontroller, can be generated. An assembler is used to convert the
abstractions used in assembly language to machine code that the microcontroller can operate on
directly.

3.1 Source File Format
Assembly language source files for the PSoC Designer Assembler have five basic components as
listed in Table 3-1. Each line of the source file may hold a single label, mnemonic, comment, or direc-
tive. Multiple operands or expressions may be used on a single source file line. The maximum length
for a line is 2,048 characters (including spaces) and the maximum word length is 256 characters. A
word is a string of characters surrounded by spaces. 

Table 3-1.  Five Basic Components of an Assembly Source File

Component Description

Label Symbolic name followed by a colon (:).

Mnemonic Character string representing an M8C instruction.

Operand Arguments to M8C instructions.

Comment
May follow operands or expressions and starts in any column if first non-space character is 
either a C++-style comment (//) or semi-colon (;).

Directive A command, interpreted by the Assembler, to control the generation of machine code.

Avoid use of the following characters in path and file names (they are problematic): \ / : * ? " < > | & 
+ , ; = [ ] % $ ` '.



26 Assembly Language Guide, Document # 38-12004 Rev. *F

PSoC Designer Assembler

All user code is built from the components listed in Table 3-1 and complex conditional-assembly con-
straints can be placed on a collection of source files. The text below has an example of each of the
six basic components that will be discussed in detail in the following subsections. Line 1 is a com-
ment line as indicated by the “//” character string. Lines 5, 6, and 7 also have comments starting
with the “;” character and continuing to the end of the line. Lines 2 and 3 are examples of assembler
directives. The character strings before the “:” character in lines 3 and 4 are labels. Lines 5, 6, and 7
have instruction mnemonics and operands.

3.1.1 Labels

A label is a case-sensitive string of alphanumeric characters and underscores (_) followed by a
colon. A label is assigned the address of the current Program Counter by the Assembler, unless the
label is defined on a line with an EQU directive. See “Equate Label EQU” on page 87 for more infor-
mation. Labels can be placed on any line, including lines with source code as long as the label
appears first. The Assembler supports three types of labels: local, global, and re-usable local. 

Local Labels.  These consist of a character string followed by a colon. Local labels cannot be refer-
enced by other source files in the same project, they can only be used within the file in which they
are defined. Local labels become global labels if they are “exported.” The following example has a
single local label named SubFun. Local labels are case sensitive.

Source File 
Components:

1 // My Project Source Code
2 include “project.inc”
3 BASE: equ 0x10
4 _main:
5 mov reg[0x00], 0x34 ;write 0x34 to Port 0
6 mov A, reg[0x04] ;read Port 1
7 and [BASE+2], A ;store Port 1 value in RAM

Local Labels: mov X, 10

SubFun:
xor reg[00h], FFh
dec X
jnz SubFun



Assembly Language Guide, Document # 38-12004 Rev. *F 27

PSoC Designer Assembler

Global Labels.  These are defined by the EXPORT assembler directive or by ending the label with
two colons “::” rather than one. Global labels may be referenced from any source file in a project.
The following example has two global labels. The EXPORT directive is used to make the SubFun
label global, while two colons are used to make the MoreFun label global. Global labels are case
sensitive.

Re-usable Local Labels.  These have multiple independent definitions within a single source file.
They are defined by preceding the label string with a period “.”. The scope of a local label is
bounded by the nearest local, or global label or the end of the source file. The following example has
a single global label called SubFun and a re-usable local label called .MoreFun. Notice that while
labels do not include the colon when referenced, re-usable local labels require that a period precede
the label string for all instances. Re-usable local labels are case sensitive.

3.1.2 Mnemonics

An instruction mnemonic is a two to five letter string that represents one of the microcontroller
instructions. All mnemonics are defined in the “Instruction Set Summary” on page 14. There can be
0 or 1 mnemonics per line of a source file. Mnemonics are not case sensitive.

Global Labels: EXPORT SubFun
mov X, 10

SubFun:
xor reg[00h], FFh
dec X
jnz SubFun
mov X, 5

MoreFun::
xor reg[00h], FFh
dec X
jnz MoreFun

Re-usable Local 
Label:

EXPORT SubFun
mov X, 10

SubFun:
xor reg[00h], FFh
mov A, 5

.MoreFun:
xor reg[04h], FFh
dec A
jnz .MoreFun
dec X
jnz SubFun



28 Assembly Language Guide, Document # 38-12004 Rev. *F

PSoC Designer Assembler

3.1.3 Operands

Operands are the arguments to instructions. The number of operands and the format they use are
defined by the instruction being used. The operand format for each instruction is covered in the
“Instruction Set Summary” on page 14.

Operands may take the form of constants, labels, dot operator, registers, RAM, or expressions.

Constants.  These are operands bearing values explicitly stated in the source file. Constants may
be stated in the source file using one of the radixes listed in Table 3-2.

Labels.  These may be used as an operand for an instruction, as described on page 26. Labels are
most often used as the operands for jump and call instructions to specify the destination address.
However, labels may be used as an argument for any instruction.

Dot Operator (.).  This is used to indicate that the ROM address of the first byte of the instruction
should be used as an argument to the instruction.

Table 3-2.  Constants Formats

Radix Name Formats Example

127 ASCII Character ‘J’
mov A, ‘J’ ;character constant
mov A, ‘\’’ ;use “\” to escape “‘”
mov A, ‘\\’ ;use “\” to escape “\”

16 Hexadecimal
0x4A
4Ah
$4A

mov A, 0x4A ;hex--”0x” prefix
mov A, 4Ah ;hex--append “h”
mov A, $4A ;hex--”$” prefix

10 Decimal 74 mov A, 74 ;decimal--no prefix

8 Octal 0112 mov A, 0112 ;octal--zero prefix

2 Binary
0b01001010
%01001010

mov A, 0b01001010 ;bin--“0b” prefix
mov A, %01001010 ;bin--”%” prefix

Example 1: mov A, <. ; moves low byte of the PC to A

Example 2: mov A, >. ; moves high byte of the PC to A

Example 3: jmp >.+3
nop
nop ; jumped to this instruction
nop



Assembly Language Guide, Document # 38-12004 Rev. *F 29

PSoC Designer Assembler

Registers.  These have two forms in PSoC devices. The first type are those that exist in the two
banks of user-accessible registers. The second type are those that exist in the microcontroller.
Table 3-3 contains examples for all types of register operands.

RAM.  These references are made by enclosing the address or expression in square brackets. The
Assembler will evaluate the expression to create the actual RAM address.

Expressions.  These may be constructed using any combination of labels, constants, the dot oper-
ator, and the arithmetic and logical operations defined in Table 3-5. 

Only the Addition expression (+) may apply to a re-locatable symbol (i.e., an external symbol). All
other expressions must be applied to constants or symbols resolvable by the Assembler (i.e., a sym-
bol defined in the file).

3.1.4 Comments

A comment starts with a semicolon (;) or a double slash (//) and goes to the end of a line. It is usu-
ally used to explain the assembly code and may be placed anywhere in the source file. The Assem-
bler ignores comments; however, they are written to the listing file for reference.

Table 3-3.  Register Formats

Type Formats Example

User-Accessible Registers reg[expr]
MOV A, reg[0x08] ;register at address 8
MOV A  reg[OU+8] ;address = label OU + 8

M8C Registers

A MOV A, 8 ;move 8 into the accumulator

F OR F, 1 ;set bit 0 of the flags

SP MOV SP, 8 ;set the stack pointer to 8

X MOV X, 8 ;set the M8C’s X reg to 8

Table 3-4.  RAM Format

Type Formats Example

Current RAM Page [expr]
MOV A, [0x08] ;RAM at address 8
MOV A, [OU+8] ;address = label OU + 8

Table 3-5.  Expressions

Precedence Expression Symbol Form

1 Bitwise Complement ~ (~ a)

2
Multiplication
Division
Modulo

*
/

%

(a * b)
(a / b)
(a % b)

3
Addition
Subtraction

+
-

(a + b)
(a – b)

4 Bitwise AND & (a & b)

5 Bitwise XOR ^ (a ^ b)

6 Bitwise OR | (a | b)

7 High Byte of an Address > (>a)

8 Low Byte of an Address < (< a)



30 Assembly Language Guide, Document # 38-12004 Rev. *F

PSoC Designer Assembler

3.1.5 Directives

An assembler directive is used to tell the Assembler to take some action during the assembly pro-
cess. Directives are not understood by the M8C microcontroller. As such, directives allow the firm-
ware writer to create code that is easier to maintain. See the Assembler Directives chapter on
page 75 for more information on directives.

3.2 Listing File Format
A <project name>.lst file is created each time the Assembler completes without errors or warn-
ings. The list file may be used to understand how the Assembler has converted the source code into
machine code.

The two lines below represent typical lines found in a listing file. Lines that begin with a four-digit
number in parentheses (“( )”) are source file lines. The number in parentheses is the source file line
number. The text following the right parenthesis is the exact text from the source file. The second
line in the example below begins with a four-digit number followed by a colon. This four-digit number
indicates the ROM address for the first machine code byte that follows the colon. In this example, the
two hexidecimal numbers that follow the colon are two bytes that form the MOV A, 74 instruction.
Notice that the Assembler converts the constants used in the source file to decimal values and that
the machine code is always show in hexidecimal. In this case the source code expressed the con-
stant as an octal value (0112), the Assembler represented the same value in decimal (74), and the
machine code uses hexidecimal (4A).

3.3 Map File Format
A <project name>.mp file is created each time the Assembler completes without errors or warn-
ings. The map file documents where the Assembler has placed areas defined by the AREA assem-
bler directive and lists the values of global labels (also called global symbols).

3.4 ROM File Format
A <project name>.rom file is created each time the Assembler completes without errors or warn-
ings. This file is provided as an alternative to the Intel HEX file that is also created by the Assembler.
The ROM file does not contain the user-defined protection settings for the Flash or the fill value used
to initialize unused portions of Flash after the end of user code. 

The ROM file is a simple text file with eight columns of data delimited by spaces. The example below
is a complete ROM file for a 47-byte program. The ROM file does not contain any information about
where the data should be located in Flash. By convention, the data in the ROM file starts at address
0x0000 in Flash. For the example below, only addresses 0x0000 through 0x002E of the Flash
have assigned values according to the ROM file.

Example LST File: (0014) mov A, 0112 ; Octal constant
01AF: 50 4A    MOV   A,74

Example ROM 
File:

80 5B 00 00 7E 00 00 00
7E 00 00 00 7D 02 62 7E
7E 00 00 00 7D 01 EF 7E
91 73 90 FE 90 89 90 14
3D 7F 60 3A 5B 60 3E 7F
3F 00 3D FF 3E CC FF 



Assembly Language Guide, Document # 38-12004 Rev. *F 31

PSoC Designer Assembler

3.5 Intel® HEX File Format
The Intel HEX file created by the Assembler is used as a platform-independent way of distributing all
of the information needed to program a PSoC microcontroller. In addition to the user data created by
the Assembler, the HEX file also contains the protection settings for the project that will be used by
the programmer.

The basic building block of the Intel HEX file format is called a record. Every record consists of six
fields as shown in Table 3-6. All fields, except for the start field, represent information as ASCII
encoded hexidecimal. This means that every eight bits of information are encoded in two ASCII
characters. 

The start field is one byte in length and must always contain a colon (:). The length field is also one
byte in length and indicates the number of bytes of data stored in the record. Because the length
field is one byte in length, the maximum amount of data stored in a record is 255 bytes which would
require 510 ASCII characters in the HEX file. The starting address field indicates the address of the
first byte of information in the record. The address field is 16 bits in length (four ASCII characters)
which allows room for 64 kilobytes of data per record.

Table 3-6.  Intel HEX File Record Format

Field Number Field Name Length (bytes) Description

1 start 1 The only valid value is the colon (:) character.

2 length 1 Indicates amount of data from 0 bytes to 255 bytes.

3
starting 
address

2

4 type 1

“00”: data
“01”: end of file
“02”: extended segment address
“03”: start segment address
“04”: extended linear address
“05”: start linear address record

5 data
Determined by 
length field

6 checksum 1



32 Assembly Language Guide, Document # 38-12004 Rev. *F

PSoC Designer Assembler

All HEX files created by the Assembler have the structure shown in Table 3-7. Each row in the table
describes a record type used in the HEX file. Each record type conforms to the record definitions dis-
cussed previously.

Table 3-7.  PSoC Microcontroller Intel HEX File Format

Record Description

<data record 1: flash data> This is the first of many data records in the HEX file that 
contain Flash data. 

<data record n: flash data> The nth record containing data for Flash (last record). 
The total number of data records for Flash data can be 
determined by dividing the available Flash space (in 
bytes) by 64. Therefore, a 16 KB part would have a HEX 
file with 256 Flash data records.

:020000040010ea The first two characters (02) indicate that this record has 
a length of two bytes (4 ASCII characters). The next four 
characters (0000) specify the starting address. The next 
two characters (04) indicate that this is an extended lin-
ear address. The four characters following 04 are the 
data for this record. Because this is an extended linear 
address record, the four characters indicate the value for 
the upper 16 bits of a 32-bit address. Therefore, the value 
of 0x0010 is a 1 MB offset. For PSoC microcontroller 
HEX files, the extended linear address is used to offset 
Flash protection data from the Flash data. The Flash pro-
tection bits start at the 1 MB address.

<data record 1: protection bits> For PSoC devices with 16 KB of Flash or less, this is the 
only data record for protection bits.

<data record m: protection bits> For PSoC devices with more than 16 KB of Flash, there 
will be an additional data record with protection bits for 
each 16 KB of additional Flash.

:020000040020da This is another extended linear address record. This 
record provides a 1 MB offset from the Flash protection 
bits (absolute address of 2 MB).

<data record: checksum> This is a two-byte data record that stores a checksum for 
all of the Flash data stored in the HEX file. The record will 
always start with :0200000000 and end with the four 
characters that represent the two-byte checksum.

:00000001ff This is the end-of-file record. The length and starting 
address fields are all zero. The type field has a value of 
0x01 and the checksum value will always be 0xff.



Assembly Language Guide, Document # 38-12004 Rev. *F 33

PSoC Designer Assembler

The following is an example of a PSoC device HEX file for a very small program. 

3.6 Convention for Restoring Internal Registers
When calling PSoC user module APIs and library functions, it is the caller's responsibility to preserve
the CPU_A and CPU_X registers. This means that if the current context of the code has a value in
the CPU_X and/or CPU_A register that must be maintained after the API call, then the caller must
save (push on the stack) and then restore (pop off the stack) them after the call has returned.

Even though some of the APIs do preserve the CPU_X and CPU_A register, Cypress reserves the
right to modify the API in future releases in such a manner as to modify the contents of the CPU_X
and CPU_A registers. Therefore, it is very important to observe the convention when calling from
assembly. Note that the C compiler observes this convention.

3.7 Compiling a File into a Library Module
Each library module is simply an object file. Therefore, to create a library module, you need to com-
pile a source file into an object file. There are several ways that you can create a library.

One method is to create a brand new project. Add all the necessary source files that you wish to be
added to your custom library to this project. You then add a project-specific MAKE file action to add
those project files to a custom library.

For example, a blank project is created for any type of part, since interest is only in using 'C' and/or
assembly, the Application Editor, and the Debugger. The goal for creating a custom library is to cen-
tralize a set of common functions that can be shared between projects. These common functions, or
primitives, have deterministic inputs and outputs. Another goal for creating this custom library is to
be able to debug the primitives using a sequence of test instructions (e.g., a regression test) in a
source file that should not be included in the library. No user modules are involved in this example.

Example Code: mov A, reg[0x04]
inc A
mov reg[0x04], A

Example ROM File: 5D 04 74 60 04

Example HEX File: :400000005d0474600430303030303030303030303030303030303
030303030303030303030303030303030303030303030303030303
0303030303030303030303030303077
:40004000303030303030303030303030303030303030303030303
030303030303030303030303030303030303030303030303030303
0303030303030303030303030303080

Records removed to make example compact.

:403fc000303030303030303030303030303030303030303030303
030303030303030303030303030303030303030303030303030303
03030303030303030303030303030c1
:020000040010ea
:40000000fffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffff
fffffffffffffffffffffffffffff00
:020000040020da
:020000000049b5
:00000001ff



34 Assembly Language Guide, Document # 38-12004 Rev. *F

PSoC Designer Assembler

PSoC Designer automatically generates a certain amount of code for each new project. In this
example, use the generated _main source file to hold regression tests, but do not add this file to the
custom library. Also, do not add the generated boot.asm source file to the library. Essentially, all the
files under the "Source Files" branch of the project view source tree go into a custom library, except
main.asm (or main.c) and boot.asm.

Create a file called local.dep in the root folder of the project. The local.dep file is included by the
master Makefile (found in the …\PSoC Designer\tools folder). The following shows how the
Makefile includes local.dep (found at the bottom of Makefile).
#this include is the dependencies
-include project.dep
#if you like project.dep that is good!
-include local.dep

The nice thing about having local.dep included at the end of the master Makefile is that the rules
used in the Makefile can be redefined (see the Help > Documentation \Supporting Docu-

ments\make.pdf for detailed information). In this example, it is used as an advantage.

The following shows information from example local.dep.
# ----- Cut/Paste to your local.dep File -----
define Add_To_MyCustomLib
$(CRLF)
$(LIBCMD) -a PSoCToolsLib.a $(library_file)
endif
obj/%.o : %.asm project.mk
ifeq ($(ECHO_COMMANDS),novice)

echo $(call correct_path,$<)
endif

$(ASMCMD) $(INCLUDEFLAGS) $(DEFAULTASMFLAGS) $(ASMFLAGS) - $@ $(call 
correct_path,$<)

$(foreach library_file, $(filter-out obj/main.o, $@), 
$(Add_To_MyCustomLib)) 

obj/%.o : %.c project.mk
ifeq ($(ECHO_COMMANDS),novice)

echo $(call correct_path,$<)
endif

$(CCMD) $(CFLAGS) $(CDEFINES) $(INCLUDEFLAGS) 
$(DEFAULTCFLAGS) -o $@ $(call correct_path,$<)
$(foreach library_file, $(filter-out obj/main.o, $@),
$(Add_To_MyCustomLib))

# ------ End Cut -----



Assembly Language Guide, Document # 38-12004 Rev. *F 35

PSoC Designer Assembler

The rules (for example, obj/%.o : %.asm project.mk and obj/%.o : %.c project.mk) in
the local.dep file shown above are the same rules found in the master Makefile with one addition
each. The addition in the redefined rules is to add each object (target) to a library called PSoC-
ToolsLib.a. For example:
$(foreach library_file, $(filter-out obj/main.o, 
$@), $(Add_To_MyCustomLib))

The MAKE keyword foreach causes one piece of text (the first argument) to be used repeatedly,
each time with a different substitution performed on it. The substitution list comes from the second
foreach argument.

In this second argument, there is another MAKE keyword/function called filter-out. The fil-
ter-out function removes obj/main.o from the list of all targets being built (for example, obj/
%.o). This was one of the goals for this example. You can filter out additional files by adding those
files to the first argument of filter-out such as:

$(filter-out obj/main.o obj/excludeme.o, $@).

The MAKE symbol combination $@ is a shortcut syntax that refers to the list of all the targets (for
example, obj/%.o).

The third argument in the foreach function is expanded into a sequence of commands, for each
substitution, to update or add the object file to the library. This local.dep example is prepared to han-
dle both C and assembly source files and put them in the library, PSoCToolsLib.a. The library is cre-
ated/updated in the project root folder in this example. However, you can provide a full path to
another folder. For example:

$(LIBCMD) -a c:\temp\PSoCToolsLib.a $(library_file.

Another goal was to not include the boot.asm file in the library. This is easy given that the master
Makefile contains a separate rule for the boot.asm source file, which is not redefined in local.dep.

You can cut and paste this example and place it in a local.dep file in the root folder of any project. To
view messages in the Build tab of the Output Status window regarding the behavior of your custom
process, go to Tools > Options > Builder tab and click a check at “Use verbose build messages.“

Use the Project > Settings > Linker tab fields to add the library modules/library path if you want other
PSoC Designer projects to link in your custom library.



36 Assembly Language Guide, Document # 38-12004 Rev. *F

PSoC Designer Assembler



Assembly Language Guide, Document # 38-12004 Rev. *F 37

4. M8C Instruction Set

This chapter describes all M8C instructions in detail. The M8C supports a total of 256 instructions
which are divided into 37 instruction types and arranged in alphabetical order according to the
instruction types mnemonic.

For each instruction the assembly code format will be illustrated as well as the operation performed
by the instruction. The microprocessor cycles that are listed for each instruction are for instructions
that are not on a ROM (Flash) page-boundary execution. If the instruction is located on a 256-byte
ROM page boundary, an additional microprocessor clock cycle will be needed by the instruction.
The expr string that is used to explain the assembly code format represents the use of assembler
directives which tell the Assembler how to calculate the constant used in the final machine code.
Note that in the operation equations the machine code constant is represented by k, k1, and k2.

While the instruction mnemonics are often shown in all capital letters, the PSoC Designer Assembler
ignores case for directives and instructions mnemonics. However, the Assembler does consider
case for user-defined symbols (i.e., labels). 

Note that information about individual M8C instructions is also available via PSoC Designer Online
Help. Pressing the [F1] key will cause the online help system to search for the word at the current
insertion point in a source file. If your insertion point is an instruction mnemonic, pressing [F1] will
direct you to information about that instruction.



38 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.1 Add with Carry ADC
Computes the sum of the two operands plus the carry value from the Flag register. The first oper-
and’s value is replaced by the computed sum. If the sum is greater than 255, the Carry Flag is set in
the Flag register. If the sum is zero, the Zero Flag is set in the Flag register. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

ADC A, expr 0x09 4 2

ADC A, [expr] 0x0A 6 2

ADC A, [X+expr] 0x0B 7 2

ADC [expr], A 0x0C 7 2

ADC [X+expr], A 0x0D 8 2

ADC [expr], expr 0x0E 9 3

ADC [X+expr], expr 0x0F 10 3

Conditional 
Flags:

CF
ZF

Set if the sum > 255; cleared otherwise.

Set if the result is zero; cleared otherwise.

Example 1: mov A, 0 ;set accumulator to zero
or F, 0x02 ;set carry flag
adc A, 12 ;accumulator value is now 13

Example 2: mov [0x39], 0 ;initialize ram[0x39]=0x00
mov [0x40], FFh ;initialize ram[0x40]=0xFF
inc [0x40] ;ram[0x40]=0x00, CF=1, ZF=1
adc [0x39], 0 ;ram[0x39]=0x01, CF=0, ZF=0

A A k CF+ +←

A A← ram k[ ] CF+ +

A A← ram X k+[ ] CF+ +

ram k[ ] ram← k[ ] A CF+ +

ram X k+[ ] ram← X k+[ ] A CF+ +

ram k1[ ] ram← k1[ ] k2 CF+ +

ram X k1+[ ] ram X k1+[ ]← k2 CF+ +



Assembly Language Guide, Document # 38-12004 Rev. *F 39

M8C Instruction Set

4.2 Add without Carry ADD
Computes the sum of the two operands. The first operand’s value is replaced by the computed sum.
If the sum is greater than 255, the Carry Flag is set in the Flag register. If the sum is zero, the Zero
Flag is set in the Flag register. The ADD SP, expr instruction does not affect the flags in any way. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

ADD A, expr 0x01 4 2

ADD A, [expr] 0x02 6 2

ADD A, [X+expr] 0x03 7 2

ADD [expr], A 0x04 7 2

ADD [X+expr], A 0x05 8 2

ADD [expr], expr 0x06 9 3

ADD [X+expr], expr 0x07 10 3

ADD SP, expr 0x38 5 2

Conditional 
Flags:

CF

ZF

Set if the sum > 255; cleared otherwise.
ADD SP, expr does not affect the Carry Flag.

Set if the result is zero; cleared otherwise.
ADD SP, expr does not affect the Zero Flag.

Example 1: mov A, 10 ;initialize A to 10 (decimal)
add A, 240 ;result is A=250 (decimal)
add A, 6 ;result is A=0, CF=1, ZF=1

Example 2: mov A, 10 ;initialize A to 10 (decimal)
add A, 240 ;result is A=250 (decimal)
add A, 7 ;result is A=1, CF=1, ZF=0
add A, 5 ;result is A=6, CF=0, ZF=0

Example 3: mov A, 10 ;initialize A to 10 (decimal)
swap A, SP ;put 10 in SP
add SP, 240 ;result is SP=250 (decimal)
add SP, 6 ;SP=0, CF=unchanged, ZF=unchanged

A A k+←

A A← ram k[ ]+

A A← ram X k+[ ]+

ram k[ ] ram← k[ ] A+

ram X k+[ ] ram← X k+[ ] A+

ram k1[ ] ram← k1[ ] k2+

ram X k1+[ ] ram X k1+[ ]← k2+

SP SP k+←



40 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.3 Bitwise AND AND

Computes the logical AND for each bit position using both arguments. The result of the logical AND
is placed in the corresponding bit position for the first argument.

The Carry Flag is only changed when the AND F, expr instruction is used. The CF will be set to the
result of the logical AND of the CF at the beginning of instruction execution and the second argu-
ment’s value at bit position 2 (i.e., F[2] and expr[2]).

For the AND F, expr instruction the ZF is handled the same as the CF in that it is changed as a
result of the logical AND of the ZF’s value at the beginning of instruction execution and the value of
the second argument’s value at bit position 1 (i.e., F[1] and expr[1]). However, for all other AND
instructions the Zero Flag will be set or cleared based on the result of the logical AND operation. If
the result of the AND is that all bits are zero, the Zero Flag will be set; otherwise, the Zero Flag Is
cleared.

Note that AND (or OR or XOR, as appropriate) is a read-modify write instruction. When operating on
a register, that register must be of the read-write type. Bitwise AND to a write only register will gener-
ate nonsense.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

AND A, expr 0x21 4 2

AND A, [expr] 0x22 6 2

AND A, [X+expr] 0x23 7 2

AND [expr], A 0x24 7 2

AND [X+expr], A 0x25 8 2

AND [expr], expr 0x26 9 3

AND [X+expr], expr 0x27 10 3

AND REG[expr], expr 0x41 9 3

AND
REG[X+expr], 
expr

0x42 10 3

AND F, expr 0x70 4 2

Conditional 
Flags:

CF

ZF

Affected only by the AND F, expr instruction.

Set if the result is zero; cleared otherwise.
AND F, expr will set this flag as a result of the AND operation.

Example 1: and A, 0x00 ;A=0, CF=unchanged, ZF=1

Example 2: and F, 0x00 ;F=0 therefore CF=0, ZF=0

A A &  k←

A A &  ram[k]←

A A &  ram[X+k]←

ram k[ ] ram k[ ] &  A←

ram X k+[ ] ram X k+[ ] &  A←

ram k1[ ] ram k1[ ] &  k2←

ram X k1+[ ] ram X k1+[ ] &  k2←

reg k1[ ] reg k1[ ] &  k2←

reg X k1+[ ] reg X k1+[ ] &  k2←

F F &  k←



Assembly Language Guide, Document # 38-12004 Rev. *F 41

M8C Instruction Set

4.4 Arithmetic Shift Left ASL

Shifts all bits of the instruction’s argument one bit to the left. Bit 7 is loaded into the Carry Flag and
bit 0 is loaded with a zero.

 
Instructions

Operation Opcode Cycles Bytes
Mnemonic Argument

ASL A 0x64 4 1

ASL [expr] 0x65 7 2

ASL [X+expr] 0x66 8 2

Conditional 
Flags:

CF

ZF

Set equal to the initial argument’s bit 7 value.

Set if the result is zero; cleared otherwise.

Example 1: mov A, 0x7F ;initialize A with 127
asl A ;A=0xFE, CF=0, ZF=0

Example 2: mov 0xEB], AA ;initialize RAM @ 0xEB with 0
asl 0xEB] ;ram[0xEB]=54, CF=1, ZF=0

7 45 23 01CF 06

A

CF A:7←
A:7 A:6←
A:6 A:5←
A:5 A4←
A:4 A:3←
A:3 A:2←
A:2 A:1←
A:1 A:0←

A:0 0←

←

ram k[ ]

CF ram k[ ]:7←
ram k[ ]:7 ram k[ ]:6←
ram k[ ]:6 ram k[ ]:5←
ram k[ ]:5 ram k[ ]:4←
ram k[ ]:4 ram k[ ]:3←
ram k[ ]:3 ram k[ ]:2←
ram k[ ]:2 ram k[ ]:1←
ram k[ ]:1 ram k[ ]:0←

ram k[ ]:0 0←

←

ram X k+[ ]

CF ram X k+( )[ ]:7←
ram X k+( )[ ]:7 ram X k+( )[ ]:6←
ram X k+( )[ ]:6 ram X k+( )[ ]:5←
ram X k+( )[ ]:5 ram X k+( )[ ]:4←
ram X k+( )[ ]:4 ram X k+( )[ ]:3←
ram X k+( )[ ]:3 ram X k+( )[ ]:2←
ram X k+( )[ ]:2 ram X k+( )[ ]:1←
ram X k+( )[ ]:1 ram X k+( )[ ]:0←

ram X k+( )[ ]:0 0←

←



42 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.5 Arithmetic Shift Right ASR

Shifts all bits of the instruction’s argument one bit to the right. Bit 7 remains the same while bit 0 is
shifted into the Carry Flag. 

 
Instructions

Operation Opcode Cycles Bytes
Mnemonic Argument

ASR A 0x67 4 1

ASR [expr] 0x68 7 2

ASR [X+expr] 0x69 8 2

Conditional 
Flags:

CF

ZF

Set if LSB of the source was set before the shift, else cleared.

Set if the result is zero; cleared otherwise.

Example 1: mov A, 0x00 ;initialize A to 0
and F, 0x00 ;make sure all flags are cleared
asr A ;A=0, CF=0, ZF=1

Example 2: mov A, 0xFF ;initialize A to 255
and F, 0x00 ;make sure all flags are cleared
asr A ;A=0xFF, CF=1, ZF=0

Example 3: mov A, 0xAA ;initialize A to 170
and F, 0x00 ;make sure all flags are cleared
asr A ;A=0xD5, CF=0, ZF=0

7 45 23 016 CF

A
CF A:0, A:0 A:1, A:1 A:2←←←
A:2 A:3, A:3 A:4, A:4 A:5←←←

A:5 A:6, A:6 A:7←←

←

ram k[ ]

CF ram k( )[ ]:0←
ram k[ ]:0 ram k[ ]:1←
ram k[ ]:1 ram k[ ]:2←
ram k[ ]:2 ram k[ ]:3←
ram k[ ]:3 ram k[ ]:4←
ram k[ ]:4 ram k[ ]:5←
ram k[ ]:5 ram k[ ]:6←
ram k[ ]:6 ram k[ ]:7←

←

ram X k+[ ]

CF ram X k+( )[ ]:0←
ram X k+( )[ ]:0 ram X k+( )[ ]:1←
ram X k+( )[ ]:1 ram X k+( )[ ]:2←
ram X k+( )[ ]:2 ram X k+( )[ ]:3←
ram X k+( )[ ]:3 ram X k+( )[ ]:4←
ram X k+( )[ ]:4 ram X k+( )[ ]:5←
ram X k+( )[ ]:5 ram X k+( )[ ]:6←
ram X k+( )[ ]:6 ram X k+( )[ ]:7←

←



Assembly Language Guide, Document # 38-12004 Rev. *F 43

M8C Instruction Set

4.6 Call Function CALL

Adds the signed argument to the current PC+2 value resulting in a new PC that determines the
address of the first byte of the next instruction. The current PC value is defined as the PC value that
corresponds to the ROM address of the first byte of the next instruction.

Two pushes are used to store the Program Counter (PC+2) on the stack. First, the upper 8 bits of the
PC (CPU_PC register) are placed on the stack followed by the lower 8 bits. The Stack Pointer is
post-incremented for each push. For devices with more than 256 bytes of RAM, the stack is confined
to a single designated stack page defined in the device data sheet. The M8C automatically selects
the stack page as the destination for the push during the CALL instruction. Therefore, a CALL
instruction may be issued in any RAM page. After the CALL instruction has completed, user code will
be operating from the same RAM page as before the CALL instruction was executed.

This instruction has a 12-bit two’s-complement relative address that is added to the PC. The 12 bits
are packed into the two-byte instruction format by using the lower nibble of the opcode and the sec-
ond byte of the instruction format. Therefore, all opcodes with an upper nibble of 9 are CALL instruc-
tions. The “x” character is used in the table below to indicate that the first byte of a CALL instruction
can have one of 16 values (i.e., 0x90, 0x91, 0x92,..., 0x9F).  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

CALL expr 0x9x 11 2

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 40 nop
0001 90 E8 call SubFun
0003 40 nop
Note that the relative address for the CALL above is positive 
(0xE8) and that the sum of that address and the PC value for 
the first byte of the next instruction (0x0003) equals the 
address of the SubFun label (0xE8 + 0x0003 = 0x00EB).

0004 9F FA call _main
Note that the call to Main uses a negative address (0xFA).

0006 
00EB org 0x00EB
00EB SubFun:
00EB 40 nop 
00EC 7F ret

PC PC 2 k 2048– k 2047≤ ≤( ),+ +←



44 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.7 Non-Destructive Compare CMP

Subtracts the second argument from the first. If the difference is less than zero the Carry Flag is set.
If the difference is 0 the Zero Flag is set. Neither operand’s value is destroyed by this instruction.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

CMP A, expr 0x39 5 2

CMP A, [expr] 0x3A 7 2

CMP A, [X+expr] 0x3B 8 2

CMP [expr], expr 0x3C 8 3

CMP [X+expr], expr 0x3D 9 3

Conditional 
Flags:

CF

ZF

Set if Operand 1 < Operand 2; cleared otherwise.

Set if the operands are equal; cleared otherwise.

Example: mov A, 34 ;initialize the accumulator to 34
cmp A, 33 ;A>=34 CF cleared, A != 33 ZF cleared
cmp A, 34 ;A=34 CF cleared, ZF set
cmp A, 35 ;A<35 CF set, A != 35 ZF cleared

A k–

A ram k[ ]–

A ram X k+[ ]–

ram k1[ ] k2–

ram X k1+[ ] k2–



Assembly Language Guide, Document # 38-12004 Rev. *F 45

M8C Instruction Set

4.8 Complement Accumulator CPL

Computes the bitwise complement of the Accumulator and stores the result in the Accumulator. The
Carry Flag is not affected but the Zero Flag will be set, if the result of the complement is ‘0’ (for
example, the original value was 0xFF).  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

CPL A 0x73 4 1

Conditional 
Flags:

CF

ZF

Unaffected.

Set if the result is zero; cleared otherwise.

Example 1: mov A, 0xFF
cpl A ;A=0x00, ZF=1

Example 2: mov A, 0xA5
cpl A ;A=0x5A, ZF=0

Example 3: mov A, 0xFE
cpl A ;A=0x01, ZF=0

A A←



46 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.9 Decrement DEC

Subtracts one from the value of the argument and replaces the argument’s original value with the
result. If the result is ‘-1’ (original value was zero) the Carry Flag is set. If the result is ‘0’ (original
value was one) the Zero Flag is set.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

DEC A 0x78 4 1

DEC X 0x79 4 1

DEC [expr] 0x7A 7 2

DEC [X+expr] 0x7B 8 2

Conditional 
Flags:

CF

ZF

Set if the result is -1; cleared otherwise.

Set if the result is zero; cleared otherwise.

Example: mov [0xEB], 3
loop2: ;The loop will be executed 3 times.
dec [0xEB]
jnz loop2 ;Jump will not be taken when ZF is set by

;DEC (i.e., wait until the loop counter
;(0xEB) is decremented to 0x00).

A A 1–←

X X 1–←

ram k[ ] ram k[ ] 1–←

ram X k+[ ] ram X k+[ ] 1–←



Assembly Language Guide, Document # 38-12004 Rev. *F 47

M8C Instruction Set

4.10 Halt HALT

Halts the execution of the processor. The processor will remain halted until a Power-On-Reset
(POR), Watchdog Timer Reset (WDR), or external reset (XRES) event occurs. The POR, WDR, and
XRES are all hardware resets that will cause a complete system reset, including the resetting of reg-
isters to their power-on state. Watchdog reset will not cause the Watchdog Timer to be disabled,
while all other resets will disable the Watchdog Timer.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

HALT 0x30 9 1

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: halt ;sets STOP bit in CPU_SCR register

reg CPU_SCR[ ] reg CPU_SCR[ ] 1+←



48 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.11 Increment INC

Adds one to the argument. The argument’s original value is replaced by the new value. If the value
after the increment is 0x00, the Carry Flag and the Zero Flag will be set (original value must have
been 0xFF). 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

INC A 0x74 4 1

INC X 0x75 4 1

INC [expr] 0x76 7 2

INC [X+expr] 0x77 8 2

Conditional 
Flags:

CF

ZF

Set if value after the increment is 0; cleared otherwise.

Set if the result is zero; cleared otherwise.

Example 1: mov A, 0x00 ;initialize A to 0
or F, 0x06 ;make sure CF and ZF are set (1)
inc A ;A=0x01, CF=0, ZF=0

Example 2: mov A, 0xFF ;initialize A to 0
and F, 0x00 ;make sure flags are all 0
inc A ;A=0x00, CF=1, ZF=1

A A 1+←

X X 1+←

ram k[ ] ram k[ ] 1+←

ram X k+[ ] ram X k+[ ]←



Assembly Language Guide, Document # 38-12004 Rev. *F 49

M8C Instruction Set

4.12 Relative Table Read INDEX

Places the contents of ROM at the location indicated by the sum of the Accumulator, the argument,
and the current PC+2 into the Accumulator. This instruction has a 12-bit, two’s-complement offset
address, relative to the current PC+2. The current PC value is defined as the PC value that corre-
sponds to the ROM address of the first byte of the instruction.

The INDEX instruction is used to retrieve information from a table to the Accumulator. The lower nib-
ble of the first byte of the instruction is used as the upper 4 bits of the 12-bit address. Therefore, all
instructions that begin with 0xF are INDEX instructions, so all of the following are INDEX opcodes:
0xF0, 0xF1, 0xF2,..., 0xFF.

The offset into the table is taken as the value of the Accumulator when the INDEX instruction is exe-
cuted. The maximum readable table size is 256 bytes due to the Accumulator being 8 bits in length.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

INDEX expr 0xFx 13 2

Conditional 
Flags:

CF

ZF

Unaffected.

Set if the byte returned to A is zero.

Example: 0000 OUT_REG: equ 04h
0000 40 [04] nop
0001 50 03 [04] mov A, 3
0003 F0 E6 [13] index ASCIInumbers
0005 60 04 [05] mov reg[OUT_REG], A

Note that the 12-bit address for the INDEX instruction is positive and that the sum 
of the address (0x0E6) and the next instruction’s address (0x0005) are equal to 
the first address of the ASCIInumbers table (0x00EB). Because the Accumulator 
has been set to 3 before executing the INDEX instruction, the fourth byte in the 
ASCIInumbers table will be returned to A. Therefore, A will be 0x33 at the end of 
the INDEX instruction.

0007
00EB org 0x00EB
00EB ASCIInumbers:
00EB 30 31 ...          ds      "0123456789"

32 33 34 35 36 37 38 39

A rom k A PC 2+ + +[ ], 2048 k≤– 2047≤( )←



50 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.13 Jump Accumulator JACC

Jump, unconditionally, to the address computed by the sum of the Accumulator, the 12-bit two’s-
compliment argument, and the current PC+1. The current PC value is defined as the PC value that
corresponds to the ROM address of the first byte of the JACC instruction.

The Accumulator is not affected by this instruction. The JACC instruction uses a two-byte instruction
format where the lower nibble of the first byte is used for the upper 4 bits of the 12-bit relative
address. This causes an effective 4-bit opcode. Therefore, the following are all valid opcode bytes
for the JACC instruction: 0xE0, 0xE1, 0xE2,..., 0xEF.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

JACC expr 0xEx 7 2

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 50 03 mov A, 3 ;set A with jump offset
0002 E0 01 jacc SubFun

Program execution will jump to address 0x0007 (halt)

0004 SubFun:
0004 40 nop
0005 40 nop
0006 40 nop
0007 30 halt

PC PC 1+( ) k A+ +←



Assembly Language Guide, Document # 38-12004 Rev. *F 51

M8C Instruction Set

4.14 Jump if Carry JC
If the Carry Flag is set, jump to the sum of the relative address argument and the current PC+1. The
current PC value is defined as the PC value that corresponds to the ROM address of the first byte of
the JC instruction.

The JC instruction uses a two-byte instruction format where the lower nibble of the first byte is used
for the upper 4 bits of the 12-bit relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid opcode bytes for the JC instruction: 0xC0, 0xC1, 0xC2,..., 0xCF.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

JC expr 0xCx 5 2

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 55 3C 02 mov [3Ch], 2
0003 16 3C 03 sub [3Ch], 3 ;2-2=0 CF=1, ZF=0
0006 C0 02 jc SubFun ;CF=1, jump to SubFun
0008 30 halt
0009
0009 SubFun:
0009 40 nop

PC PC 1+( ) k+← , 2048– k 2047≤ ≤( )



52 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.15 Jump JMP

Jump, unconditionally, to the address indicated by the sum of the argument and the current PC+1.
The current PC value is defined as the PC value that corresponds to the ROM address of the first
byte of the JMP instruction.

The JMP instruction uses a two-byte instruction format where the lower nibble of the first byte is used
for the upper 4 bits of the 12-bit relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid opcode bytes for the JMP instruction: 0x80, 0x81, 0x82,..., 0x8F. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

JMP expr 0x8x 5 2

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 80 01 [05] jmp SubFun

Jump is forward, relative to PC, therefore offset is positive (0x01).

0002 SubFun:
0002 8F FD [05] jmp _main

Jump is backwards, relative to PC, therefore, offset is negative (0xFD).

PC PC 1+( ) k+← , 2048– k 2047≤ ≤( )



Assembly Language Guide, Document # 38-12004 Rev. *F 53

M8C Instruction Set

4.16 Jump if No Carry JNC

If the Carry Flag is not set, jump to the sum of the relative address argument and the current PC+1.
The current PC value is defined as the PC value that corresponds to the ROM address of the first
byte of the JNC instruction.

The JNC instruction uses a two-byte instruction format where the lower nibble of the first byte is used
for the upper 4 bits of the 12-bit relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid opcode bytes for the JNC instruction: 0xD0, 0xD1, 0xD2,..., 0xDF. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

JNC expr 0xDx 5 2

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 55 3C 02 [08] mov [3Ch], 2
0003 16 3C 02 [09] sub [3Ch], 2 ;2-2=0 CF=0, ZF=1
0006 D0 02 [05] jnc SubFun ;jump to SubFun
0008 30 [04] halt
0009
0009 SubFun:
0009 40 [04] nop

PC PC 1+( ) k+← , 2048– k 2047≤ ≤( )



54 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.17 Jump if Not Zero JNZ

If the Zero Flag is not set, jump to the address indicated by the sum of the argument and the current
PC+1. The current PC value is defined as the PC value that corresponds to the ROM address of the
first byte of the JNZ instruction.

The JNZ instruction uses a two-byte instruction format where the lower nibble of the first byte is used
for the upper 4 bits of the 12-bit relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid opcode bytes for the JNZ instruction: 0xB0, 0xB1, 0xB2,..., 0xBF. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

JNZ expr 0xBx 5 2

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 55 3C 02 [08] mov [3Ch], 2
0003 16 3C 01 [09] sub [3Ch], 1 ;2-1=1 CF=0, ZF=0
0006 B0 02 [05] jnz SubFun ;jump to SubFun
0008 30 [04] halt
0009
0009 SubFun:
0009 40 [04] nop

PC PC 1+( ) k+← , 2048– k 2047≤ ≤( )



Assembly Language Guide, Document # 38-12004 Rev. *F 55

M8C Instruction Set

4.18 Jump if Zero JZ

If the Zero Flag is set, jump to the address indicated by the sum of the argument and the current
PC+1. The current PC value is defined as the PC value that corresponds to the ROM address of the
first byte of the JZ instruction.

The JZ instruction uses a two-byte instruction format where the lower nibble of the first byte is used
for the upper 4 bits of the 12-bit relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid opcode bytes for the JZ instruction: 0xA0, 0xA1, 0xA2,..., 0xAF. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

JZ expr 0xAx 5 2

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 55 3C 02 [08] mov [3Ch], 2
0003 16 3C 02 [09] sub [3Ch], 2 ;2-2=0 CF=0, ZF=1
0006 A0 02 [05] jz SubFun ;jump to SubFun
0008 30 [04] halt
0009
0009 SubFun:
0009 40 [04] nop

PC PC 1+( ) k+← , 2048– k 2047≤ ≤( )



56 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.19 Long Call LCALL

Replaces the PC value with the LCALL instruction’s argument. The new PC value determines the
address of the first byte of the next instruction.

Two pushes are used to store the Program Counter (current PC+3) on the stack. The current PC
value is defined as the PC value that corresponds to the ROM address of the first byte of the instruc-
tion. 

First, the upper 8 bits of the PC+3 are placed on the stack followed by the lower 8 bits. The Stack
Pointer is post-incremented for each push. For PSoC microcontrollers with more than 256 bytes of
RAM, the stack is confined to a single designated stack page defined in the device data sheet. The
M8C automatically selects the stack page as the destination for the push during the LCALL instruc-
tion. Therefore, a LCALL instruction may be issued in any RAM page. After the LCALL instruction
has completed, user code will be operating from the same RAM page as before the LCALL instruc-
tion was executed.

This instruction has a 16-bit unsigned address. A three-byte instruction format is used where the first
byte is a full 8-bit opcode. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

LCALL expr 0x7C 13 3

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 7C 00 05 [13] lcall SubFun
0003 8F FC [05] jmp _main

Although in this example a full 16-bit address is not needed for the call to SubFun, 
the listing above shows that the lcall instruction is using a three byte format 
which accommodates the 16-bit absolute jump address of 0x0005.

0005
0005 SubFun:
0005 7F [08] ret

ram SP[ ] PC 3+( ) 15:8[ ]
SP SP 1
ram SP[ ] PC 3+( ) 7:0[ ]
SP SP 1
PC k, 0 k 65535≤ ≤( )←

+
←

←

+
←

←



Assembly Language Guide, Document # 38-12004 Rev. *F 57

M8C Instruction Set

4.20 Long Jump LJMP

Jump, unconditionally, to the unsigned address indicated by the instruction’s argument. The LJMP
instruction uses a three-byte instruction format to accommodate a full 16-bit argument. The first byte
of the instruction is a full 8-bit opcode. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

LJMP expr 0x7D 7 3

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 7D 00 03 [07] ljmp SubFun

Although in this example a full 16-bit address is not needed for the jump to SubFun 
the listing above shows that the ljmp instruction is using a three byte format which 
accommodates the 16-bit absolute jump address of 0x0003.

0003
0003 SubFun:
0003 7D 00 00 [07] ljmp _main

Note that this instruction is jumping backwards, relative to the current PC value, 
and the address in the instruction is a positive number (0x0000). This is because 
the ljmp instruction uses an absolute address.

PC K, 0 k 65535≤ ≤( )←



58 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.21 Move MOV

Allows for a number of combinations of moves: immediate, direct, and indexed addressing are sup-
ported. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

MOV X, SP 0x4F 4 1

MOV A, expr 0x50 4 2

MOV A, [expr] 0x51 5 2

MOV A, [X+expr] 0x52 6 2

MOV [expr], A 0x53 5 2

MOV [X+expr], A 0x54 6 2

MOV [expr], expr 0x55 8 3

MOV [X+expr], expr 0x56 9 3

MOV X, expr 0x57 4 2

MOV X, [expr] 0x58 6 2

MOV X, [X+expr] 0x59 7 2

MOV [expr], X 0x5A 5 2

MOV A, X 0x5B 4 1

MOV X, A 0x5C 4 1

MOV A, reg[expr] 0x5D 6 2

MOV A, reg[X+expr] 0x5E 7 2

MOV [expr], [expr] 0x5F 10 3

MOV REG[expr], A 0x60 5 2

MOV REG[X+expr], A 0x61 6 2

MOV REG[expr], expr 0x62 8 3

MOV
REG[X+expr], 
expr

0x63 9 3

Conditional 
Flags:

CF

ZF

Unaffected.

Set if A is the destination and the result is zero.

Example: mov A, 0x01 ;accumulator will equal 1, ZF=0
mov A, 0x00 ;accumulator will equal 0, ZF=1

X SP←

A k←

A ram k[ ]←

A ram X k+[ ]←

ram k[ ] A←

ram X k+[ ] A←

ram k1[ ] k2←

ram X k1+[ ] k2←

X k←

X ram k[ ]←

X ram X k+[ ]←

ram k[ ] X←

A X←

X A←

A reg k[ ]←

A reg X k+[ ]←

ram k1[ ] ram k2[ ]←

reg k[ ] A←

reg X k+[ ] A←

reg k1[ ] k2←

reg X k1+[ ] k2←



Assembly Language Guide, Document # 38-12004 Rev. *F 59

M8C Instruction Set

4.22 Move Indirect, Post-Increment to Memory MVI

A data pointer in RAM is used to move data between another RAM address and the Accumulator.
The data pointer is incremented after the data transfer has completed.

For PSoC microcontrollers with more than 256 bytes of RAM, special page pointers are used to
allow the MVI instructions to access data in remote RAM pages. Two page pointers are available,
one for MVI read (MVI A, [[expr]++]) and another for MVI write (MVI [[expr]++], A). The
data pointer is always found in the current RAM page. The page pointers determine which RAM
page the data pointer’s address will use. At the end of an MVI instruction, user code will be operating
from the same RAM page as before the MVI instruction was executed. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

MVI A, [[expr]++] 0x3E 10 2

MVI [[expr]++], A 0x3F 10 2

Conditional 
Flags:

CF

ZF

Unaffected.

Set if A is updated with zero.

Example 1: mov [10h], 4
mov [11h], 3
mov [EBh], 10h ;initialize MVI read pointer to 10h
mvi A, [EBh] ;A=4, ram[EBh]=11h
mvi A, [EBh] ;A=3, ram[EBh]=12h

Example 2: mov [EBh], 10h ;initialize MVI write pointer to 10h
mov A, 8
mvi [EBh], A ;ram[10h]=8, ram[EBh]=11h
mov A, 1
mvi [EBh], A ;ram[11h]=1, ram[EBh]=12h

Multi-Page 
Example 3:

mov reg[CUR_PP], 2 ;set Current Page Pointer to 2
mov [10h], 4 ;ram_2[10h]=4
mov [11h], 3 ;ram_2[11h]=3
mov reg[CUR_PP], 0 ;set Current Page Pointer back to 0
mov reg[MVR_PP], 2 ;set MVI write RAM page pointer
mov [EBh], 10h ;initialize MVI read pointer to 10h
mvi A, [EBh] ;A=4, ram_0[EBh]=11h
mvi A, [EBh] ;A=3, ram_0[EBh]=12h

Multi-Page 
Example 4:

mov reg[CUR_PP], 0 ;set Current Page Pointer to 0
mov reg[MVW_PP], 3 ;set MVI read RAM page pointer
mov [EBh], 10h ;initialize MVI write pointer to 10h
mov A, 8
mvi [EBh], A ;ram_3[10h]=8, ram_0[EBh]=11h
mov A, 1
mvi [EBh], A ;ram_3[11h]=1, ram_0[EBh]=12h

A ram ram k[ ][ ]
ram k[ ] ram k[ ] 1+←

←

ram ram k[ ][ ] A
ram k[ ] ram k[ ] 1+←

←



60 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.23 No Operation NOP

Performs no operation but consumes 4 CPU clock cycles. This is a one-byte instruction.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

NOP None 0x40 4 1

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.



Assembly Language Guide, Document # 38-12004 Rev. *F 61

M8C Instruction Set

4.24 Bitwise OR OR

Computes the logical OR for each bit position using both arguments. The result of the logical OR is
placed in the corresponding bit position for the first argument.

The Carry Flag is only changed when the OR F, expr instruction is used. The Carry Flag will be
set to the result of the logical OR of the Carry Flag at the beginning of instruction execution and the
second argument’s value at bit position 2 (i.e., F[2] and expr[2]).

For the OR F, expr instruction, the Zero Flag is handled the same as the Carry Flag in that it is
changed as a result of the logical OR of the Zero Flag’s value at the beginning of instruction execu-
tion, and the value of the second arguments value at bit position 1 (i.e., F[1] and expr[1]). However,
for all other OR instructions the Zero Flag will be set or cleared based on the result of the logical OR
operation. If the result of the OR instruction is that all bits are zero, the Zero Flag will be set; other-
wise, the Zero Flag is cleared.

Note that OR (or AND or XOR, as appropriate) is a read-modify write instruction. When operating on
a register, that register must be of the read/write type. Bitwise OR to a write only register will gener-
ate nonsense. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

OR A, expr 0x29 4 2

OR A, [expr] 0x2A 6 2

OR A, [X+expr] 0x2B 7 2

OR [expr], A 0x2C 7 2

OR [X+expr], A 0x2D 8 2

OR [expr], expr 0x2E 9 3

OR [X+expr], expr 0x2F 10 3

OR REG[expr], expr 0x43 9 3

OR
REG[X+expr], 
expr

0x44 10 3

OR F, expr 0x71 4 2

Conditional 
Flags:

CF

ZF

Unaffected (unless F is destination).

Set if the result is zero; cleared otherwise (unless F is destination).

Example 1: mov A, 0x00
or A, 0xAA ;A=0xAA, CF=unchanged, ZF=0

Example 2: and F, 0x00
or F, 0x01 ;F=1 therefore CF=0, ZF=0

A A k←

A A ram k[ ]←

A A ram X k+[ ]←

ram k[ ] ram k[ ] A←

ram X k+[ ] ram X k+[ ] A←

ram k1[ ] ram k1[ ] k2←

ram X k1+[ ] ram X k1+[ ] k2←

reg k1[ ] reg k1[ ] k2←

reg X k1+[ ] reg X k1+[ ] k2←

F F k←



62 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.25 Pop Stack into Register POP

Removes the last byte placed on the stack and put it in the specified M8C register. The Stack
Pointer is automatically decremented. The Zero Flag is set if the popped value is zero; otherwise,
the Zero Flag is cleared. The Carry Flag is not affected by this instruction.

For PSoC devices with more than 256 bytes of RAM, the stack is confined to a single designated
stack page defined by the value of the STK_PP Register. The M8C automatically selects the stack
page as the source for the memory read during the POP instruction. Therefore, a POP instruction may
be issued in any RAM page. After the POP instruction has completed, user code will be operating
from the same RAM page as before the POP instruction was executed.

See the RAM Paging chapter of the PSoC Technical Reference Manual (TRM) for details. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

POP A 0x18 5 1

POP X 0x20 5 1

Conditional 
Flags:

CF

ZF

Unaffected.

Set if A is updated to zero.

Example 1: mov A, 34
push A ;top value of stack is now 34, SP+1
mov A, 0 ;clear the Accumulator
pop A ;A=34, SP-1

Example 2: mov A, 34
push A ;top value of stack is now 34, SP+1
pop X ;X=34, SP-1

A ram SP 1–[ ]
SP SP 1–←

←

X ram SP 1–[ ]
SP SP 1–←

←



Assembly Language Guide, Document # 38-12004 Rev. *F 63

M8C Instruction Set

4.26 Push Register onto Stack PUSH

Transfers the value from the specified M8C register to the top of the stack, as indicated by the value
of the CPU_SP register (SP) at the start of the instruction. After placing the value on the stack, the
SP is incremented. The Zero Flag is set if the pushed value is zero, else the Zero Flag is cleared.
The Carry Flag is not affected by this instruction.

For PSoC microcontrollers with more than 256 bytes of RAM, the stack is confined to a single desig-
nated stack page defined by the value of the STK_PP Register. The M8C automatically selects the
stack page as the source for the memory write during the PUSH instruction. Therefore, a PUSH
instruction may be issued in any PUSH page. After the PUSH instruction has completed, user code
will be operating from the same RAM page as before the PUSH instruction was executed.

See the RAM Paging chapter of the PSoC Technical Reference Manual (TRM) for details. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

PUSH A 0x08 4 1

PUSH X 0x10 4 1

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example 1: mov A, 0x3E
push A ;top value of stack is now 0x3E, SP+1

Example 2: mov X, 0x3F
push X ;top value of stack is now 0x3F, SP+1

ram SP[ ] A←
SP SP 1+←

ram SP[ ] X←
SP SP 1+←



64 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.27 Return RET

The last two bytes placed on the stack are used to change the PC (CPU_PC register). The lower 8
bits of the PC are popped off the stack first, followed by the SP being decremented by one. Next, the
upper 8 bits of the PC are popped off the stack, followed by a decrement of the SP. Neither Carry or
Zero Flag is affected by this instruction.

For PSoC devices with more than 256 bytes of RAM, the stack is confined to a single designated
stack page defined by the value of the STK_PP Register. The M8C automatically selects the stack
page as the source for the pop during the RET instruction. Therefore, a RET instruction may be
issued in any RAM page. After the RET instruction has completed, user code will be operating from
the same RAM page as before the RET instruction was executed.

See the RAM Paging chapter of the PSoC Technical Reference Manual (TRM) for details. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

RET 0x7F 8 1

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: 0000 _main:
0000 90 02 [11] call SubFun
0002 40 [04] nop
0003 30 [04] halt
0004
0004 SubFun:
0004 40 [04] nop
0005 7F [08] ret

The RET instruction will set the PC to 0x0002, which is the starting address of the 
first instruction after the CALL.

SP SP 1
PC 7:0[ ] ram SP[ ]←
SP SP 1
PC 15:8[ ] ram SP[ ]←

–←

–←



Assembly Language Guide, Document # 38-12004 Rev. *F 65

M8C Instruction Set

4.28 Return from Interrupt RETI

When the M8C takes an interrupt, three bytes are pushed onto the stack. One for CPU_F and two
for the PC. When a RETI is executed, the last three bytes placed on the stack are used to change
the CPU_F register and the CPU_PC register. The first byte removed from the stack is used to
restore the CPU_F register. The SP (CPU_SP register) is decremented after the first byte is
removed. The lower 8 bits of the PC are popped off the stack next, followed by the SP being decre-
mented by one again. Finally, the upper 8 bits of the PC are popped off the stack, followed by a last
decrement of the SP. The Carry and Zero Flags are updated with the values from the first byte
popped off the stack.

For PSoC devices with more than 256 bytes of RAM, the stack is confined to a single designated
stack page defined by the value of the STK_PP Register. The M8C automatically selects the stack
page as the source for the pop during the RETI instruction. Therefore, an RETI instruction may be
issued in any RAM page. After the RETI instruction has completed, user code will be operating from
the same RAM page as before the RETI instruction was executed.

See the RAM Paging chapter of the PSoC Technical Reference Manual (TRM) for details. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

RETI 0x7E 10 1

Conditional 
Flags:

CF

ZF

All Flag bits are restored to the value pushed during an interrupt call.

All Flag bits are restored to the value pushed during an interrupt call.

SP SP 1
F ram SP[ ]
SP SP 1
PC 7:0[ ] ram SP[ ]
SP SP 1
PC 15:8[ ] ram SP[ ]←

–←
←
–←

←
–←



66 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.29 Rotate Left through Carry RLC

Shifts all bits of the instruction’s argument one bit to the left. Bit 0 is loaded with the Carry Flag. The
most significant bit of the specified location is loaded into the Carry Flag.

. 
Instructions

Operation Opcode Cycles Bytes
Mnemonic Argument

RLC A 0x6A 4 1

RLC [expr] 0x6B 7 2

RLC [X+expr] 0x6C 8 2

Conditional 
Flags:

CF

ZF

Set if the MSB of the specified operand was set before the shift, cleared 
otherwise.

Set if the result is zero; cleared otherwise.

Example: and F, 0xFB ;clear carry flag
mov A, 0x7F ;initialize A with 127
rlc A ;A=0xFE, CF=0, ZF=0

7 45 23 016 CF

A

CF A:7←
A:7 A:6←
A:6 A:5←
A:5 A4←
A:4 A:3←
A:3 A:2←
A:2 A:1←
A:1 A:0←
A:0 CF←

←

ram k[ ]

CF ram k[ ]:7←
ram k[ ]:7 ram k[ ]:6←
ram k[ ]:6 ram k[ ]:5←
ram k[ ]:5 ram k[ ]:4←
ram k[ ]:4 ram k[ ]:3←
ram k[ ]:3 ram k[ ]:2←
ram k[ ]:2 ram k[ ]:1←
ram k[ ]:1 ram k[ ]:0←

ram k 0[ ][ ] CF←

←

ram X k+[ ]

CF ram X k+( )[ ]:7←
ram X k+( )[ ]:7 ram X k+( )[ ]:6←
ram X k+( )[ ]:6 ram X k+( )[ ]:5←
ram X k+( )[ ]:5 ram X k+( )[ ]:4←
ram X k+( )[ ]:4 ram X k+( )[ ]:3←
ram X k+( )[ ]:3 ram X k+( )[ ]:2←
ram X k+( )[ ]:2 ram X k+( )[ ]:1←
ram X k+( )[ ]:1 ram X k+( )[ ]:0←

ram X k+( )[ ]:0 CF←

←



Assembly Language Guide, Document # 38-12004 Rev. *F 67

M8C Instruction Set

4.30 Absolute Table Read ROMX

Moves any byte from ROM (Flash) into the Accumulator. The address of the byte to be retrieved is
determined by the 16-bit value formed by the concatenation of the CPU_A and CPU_X registers.
The CPU_A register is the most significant byte and the CPU_X register is the least significant byte
of the address. The Zero Flag is set if the retrieved byte is zero; otherwise, the Zero Flag is cleared.
The Carry Flag is not affected by this instruction. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

ROMX 0x28 11 1

Conditional 
Flags:

CF

ZF

Unaffected.

Set if A is zero; cleared otherwise.

Example: 0000 _main:
0000 50 00 [04] mov A, 00h
0002 57 08 [04] mov X, 08h      
0004 28 [11] romx
0005 60 00 [05] mov reg[00h], A
0007 40 [04] nop
0008 30 [04] halt

The ROMX instruction will read a byte from Flash at address 0x0008. The halt 
opcode is at address 0x0008; therefore, register 0x00 will receive the value 
0x30.

t1 PC 7:0[ ]
PC 7:0[ ] X
t2 PC 15:8[ ]
PC 15:8[ ] A
A rom PC[ ]
PC 7:0[ ] t1
PC 15:8[ ] t2←

←
←

←
←

←
←



68 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.31 Rotate Right through Carry RRC

Shifts all bits of the instruction’s argument one bit to the right. The Carry Flag is loaded into the most significant
bit of the argument. Bit 0 of the argument is loaded into the Carry Flag. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

RRC A 0x6D 4 1

RRC [expr] 0x6E 7 2

RRC [X+expr] 0x6F 8 2

Conditional 
Flags:

CF

ZF

Set if LSB of the specified operand was set before the shift; cleared oth-
erwise.

Set if the result is zero; cleared otherwise.

Example 1: or F, 0x04 ;set carry flag
and A, 0x00 ;clear the accumulator
rrc A ;A=0x80, CF=0, ZF=0

Example 2: and F, 0xFB ;clear carry flag
mov A, 0xFF ;initialize A to 255
and A, 0x00 ;make sure all flags are cleared
rrc A ;A=0x7F, CF=1, ZF=0

Example 3: or F, 0x04 ;set carry flag
mov [0xEB], 0xAA ;initialize A to 170
rrc [0xEB] ;ram[0xEB]=0xD5, CF=1, ZF=0

7 45 23 016CF

A
CF A:0, A:0 A:1, A:1 A:2←←←
A:2 A:3, A:3 A:4, A:4 A:5←←←
A:5 A:6, A:6 A:7, A:7 CF←←←

←

ram k[ ]

CF ram k( )[ ]:0←
ram k[ ]:0 ram k[ ]:1←
ram k[ ]:1 ram k[ ]:2←
ram k[ ]:2 ram k[ ]:3←
ram k[ ]:3 ram k[ ]:4←
ram k[ ]:4 ram k[ ]:5←
ram k[ ]:5 ram k[ ]:6←
ram k[ ]:6 ram k[ ]:7←

ram k[ ]:7 CF←

←

ram X k+[ ]

CF ram X k+( )[ ]:0←
ram X k+( )[ ]:0 ram X k+( )[ ]:1←
ram X k+( )[ ]:1 ram X k+( )[ ]:2←
ram X k+( )[ ]:2 ram X k+( )[ ]:3←
ram X k+( )[ ]:3 ram X k+( )[ ]:4←
ram X k+( )[ ]:4 ram X k+( )[ ]:5←
ram X k+( )[ ]:5 ram X k+( )[ ]:6←
ram X k+( )[ ]:6 ram X k+( )[ ]:7←

ram X k+( )[ ]:7 CF←

←



Assembly Language Guide, Document # 38-12004 Rev. *F 69

M8C Instruction Set

4.32 Subtract with Borrow SBB

Computes the difference of the two operands plus the carry value from the Flag register. The first
operand’s value is replaced by the computed difference. If the difference is less than ‘0’ the Carry
Flag is set in the Flag register. If the difference is zero, the Zero Flag is set in the Flag register; oth-
erwise, the Zero Flag is cleared.  

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

SBB A, expr 0x19 4 2

SBB A, [expr] 0x1A 6 2

SBB A, [X+expr] 0x1B 7 2

SBB [expr], A 0x1C 7 2

SBB [X+expr], A 0x1D 8 2

SBB [expr], expr 0x1E 9 3

SBB [X+expr], expr 0x1F 10 3

Conditional 
Flags:

CF

ZF

Set if treating the numbers as unsigned, the difference < 0; cleared other-
wise.

Set if the result is zero; cleared otherwise.

Example 1: mov A, 0 ;set accumulator to zero
or F, 0x02 ;set carry flag
sbb A, 12 ;accumulator value is now 0xF3

Example 2: mov [0x39], 2 ;initialize ram[0x39]=0x02
mov [0x40], FFh ;initialize ram[0x40]=0xff
inc [0x40] ;ram[0x40]=0x00, CF=1
sbb [0x39], 0 ;ram[0x39]=0x01

A A K CF+( )–←

A A ram k[ ] CF+( )–←

A A ram X k+[ ] CF+( )–←

ram k[ ] ram k[ ] A CF+( )–←

ram X k+[ ] ram X k+[ ] A CF+( )–←

ram k1[ ] ram k1[ ] k2 CF+( )–←

ram X k1+[ ] ram X k1+[ ] k2 CF+( )–←



70 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.33 Subtract without Borrow SUB

Computes the difference of the two operands. The first operand’s value is replaced by the computed
difference. If the difference is less than zero, the Carry Flag is set in the Flag register. If the differ-
ence is zero, the Zero Flag is set in the Flag register; otherwise, the Zero Flag is cleared. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

SUB A, expr 0x11 4 2

SUB A, [expr] 0x12 6 2

SUB A, [X+expr] 0x13 7 2

SUB [expr], A 0x14 7 2

SUB [X+expr], A 0x15 8 2

SUB [expr], expr 0x16 9 3

SUB [X+expr], expr 0x17 10 3

Conditional 
Flags:

CF

ZF

Set if treating the numbers as unsigned, the difference < 0; cleared other-
wise.

Set if the result is zero; cleared otherwise.

Example 1: mov A, 0 ;set accumulator to zero
or F, 0x04 ;set carry flag
sub A, 12 ;accumulator value is now 0xF4

Example 2: mov [0x39], 2 ;initialize ram[0x39]=0x02
mov [0x40], FFh ;initialize ram[0x40]=0xff
inc [0x40] ;ram[0x40]=0x00, CF=1
sub [0x39], 0 ;ram[0x39]=0x02

A A K–←

A A ram k[ ]–←

A A ram X k+[ ]–←

ram k[ ] ram k[ ] A–←

ram X k+[ ] ram X k+[ ] A–←

ram k1[ ] ram k1[ ] k2–←

ram X k1+[ ] ram X k1+[ ] k2–←



Assembly Language Guide, Document # 38-12004 Rev. *F 71

M8C Instruction Set

4.34 Swap SWAP

Each argument is updated with the other argument’s value. The Zero Flag is set if the Accumulator is
updated with zero, else the Zero Flag is cleared. The swap X, [expr] instruction does not affect
either the Carry or Zero Flags. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

SWAP A, X 0x4B 5 1

SWAP A, [expr] 0x4C 7 2

SWAP X, [expr] 0x4D 7 2

SWAP A, SP 0x4E 5 1

Conditional 
Flags:

CF

ZF

Unaffected.

Set if Accumulator is cleared.

Example: mov A, 0x30
swap A, SP ;SP=0x30, A equals previous SP value

t X
X A
A t←

←
←

t ram k[ ]
ram k[ ] A
A t←

←
←

t ram k[ ]
ram k[ ] X
X t←

←
←

t SP
SP A
A t←

←
←



72 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.35 System Supervisor Call SSC

Provides the method for users to access pre-existing routines in the Supervisory ROM. The supervi-
sory routines perform various system-related functions. The CPU_PC and CPU_F registers are
pushed on the stack prior to the execution of the supervisory routine. All bits of the Flag register are
cleared before any supervisory routine code is executed; therefore, interrupts and page mode are
disabled.

All supervisory routines return using the RETI instruction, causing the CPU_PC and CPU_F register
to be restored to their pre-supervisory routine state.

Supervisory routines are device specific. Reference the data sheet for the device you are using for
detailed information on the available supervisory routines. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

SSC 0x00 15 1

Conditional 
Flags:

CF

ZF

Unaffected.

Unaffected.

Example: The following example is one way to set up an SSC operation for the CY8C25xxx 
and CY8C26xxx PSoC devices. PSoC Designer uses the signature created by the 
following lines of code to recognize supervisory system calls and configures the In-
Circuit Emulator for SSC debugging. It is recommended that users take advantage 
of the SSC Macro provided in PSoC Designer, to ensure that the debugger recog-
nizes and therefore debugs supervisory operations correctly. See separate data 
sheets for complete device-specific options. 

mov X, SP ;get stack pointers current value
mov A, X ;move SP to A
add A, 3 ;add 3 to SP value
mov [0xF9], A ;store SP+3 value in ram[0xF9]=KEY2
mov [0xF8], 0x3A ;set ram[0xF9]=0x3A=KEY1
mov A, 2 ;set supervisory function code = 2
SSC ;call supervisory function

ram SP[ ] PC 15:8[ ]
SP SP 1
ram SP[ ] PC 7:0[ ]
SP SP 1
ram SP[ ] F
PC 0x0000
F 0x00←

←
←
+←
←
+←
←



Assembly Language Guide, Document # 38-12004 Rev. *F 73

M8C Instruction Set

4.36 Test for Mask TST

Calculates a bitwise AND with the value of argument one and argument two. Argument one’s value
is not affected by the TST instruction. If the result of the AND is zero, the Zero Flag is set; otherwise,
the Zero Flag is cleared. The Carry Flag is not affected by the TST instruction. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

TST [expr], expr 0x47 8 3

TST [X+expr], expr 0x48 9 3

TST REG[expr], expr 0x49 9 3

TST
REG[X+expr], 
expr

0x4A 10 3

Conditional 
Flags:

CF

ZF

Unaffected.

Set if the result of AND is zero; cleared otherwise.

Example: mov [0x00], 0x03
tst [0x00], 0x02 ;CF=0, ZF=0 (i.e. bit 1 is 1)
tst [0x00], 0x01 ;CF=0, ZF=0 (i.e. bit 0 is 1)
tst [0x00], 0x03 ;CF=0, ZF=0 (i.e. bit 0 and 1 are 1)
tst [0x00], 0x04 ;CF=0, ZF=1 (i.e. bit 2 is 0)

ram k1[ ] &  k2

ram X k1+[ ] &  k2

reg k1[ ] &  k2

reg X k1+[ ] &  k2



74 Assembly Language Guide, Document # 38-12004 Rev. *F

M8C Instruction Set

4.37 Bitwise XOR XOR

Computes the logical XOR for each bit position using both arguments. The result of the logical XOR
is placed in the corresponding bit position for the argument.

The Carry Flag is only changed when the XOR F, expr instruction is used. The CF will be set to
the result of the logical XOR of the CF at the beginning of instruction execution and the second argu-
ment’s value at bit position 2 (i.e., F[2] and expr[2]).

For the XOR F, expr instruction, the Zero Flag is handled the same as the Carry Flag in that it is
changed as a result of the logical XOR of the Zero Flag’s value at the beginning of instruction execu-
tion, and the value of the second argument’s value at bit position 1 (i.e., F[1] and expr[1]). However,
for all other XOR instructions, the Zero Flag will be set or cleared based on the result of the logical
XOR operation. If the result of the XOR instruction is that all bits are zero, the Zero Flag will be set;
otherwise, the Zero Flag is cleared. The Carry Flag is not affected.

Note that XOR (or AND or OR, as appropriate) is a read-modify write instruction. When operating on
a register, that register must be of the read/write type. Bitwise XOR to a write only register will gener-
ate nonsense. 

Instructions
Operation Opcode Cycles Bytes

Mnemonic Argument

XOR A, expr 0x31 4 2

XOR A, [expr] 0x32 6 2

XOR A, [X+expr] 0x33 7 2

XOR [expr], A 0x34 7 2

XOR [X+expr], A 0x35 8 2

XOR [expr], expr 0x36 9 3

XOR [X+expr], expr 0x37 10 3

XOR REG[expr], expr 0x45 9 3

XOR
REG[X+expr], 
expr

0x46 10 3

XOR F, expr 0x72 4 2

Conditional 
Flags:

CF

ZF

Unaffected (unless F is destination).

Set if the result is zero; cleared otherwise (unless F is destination).

Example 1: mov A, 0x00
xor A, 0xAA ;A=0xAA, CF=unchanged, ZF=0

Example 2: and F, 0x00 ;F=0
xor F, 0x01 ;F=1 therefore CF=0, ZF=0

Example 3: mov A, 0x5A
xor A, 0xAA ;A=0xF0, CF=unchanged, ZF=0

A A k⊕←

A A ram k[ ]⊕←

A A ram X k+[ ]⊕←

ram k[ ] ram k[ ] A⊕←

ram X k+[ ] ram X k+[ ] A⊕←

ram k1[ ] ram k1[ ] k2⊕←

ram X k1+[ ] ram X k1+[ ] k2⊕←

reg k1[ ] reg k1[ ] k2⊕←

reg X k1+[ ] reg X k1+[ ] k2⊕←

F F k⊕←



Assembly Language Guide, Document # 38-12004 Rev. *F 75

5. Assembler Directives

This chapter covers all of the assembler directives currently supported by the PSoC Designer
Assembler. A description of each directive and its syntax will be given for each directive. Assembler
directives are used to communicate with the Assembler and do not generate code. The directives
allow a firmware developer to conditionally assemble source files, define symbolic equates for val-
ues, locate code or data at specific addresses, etc.

While the directives are often shown in all capital letters, the Assembler ignores case for directives
and instructions mnemonics. However, the Assembler does consider case for user-defined symbols

(i.e., labels). Table 5-1 presents a summary of the assembler directives.

Table 5-1.  Assembler Directives Summary

Symbol Directive

AREA Area

ASCIZ NULL Terminated ASCII String

BLK RAM Byte Block

BLKW RAM Word Block

DB Define Byte

DF Define Floating-point Number

DS Define ASCII String

DSU Define UNICODE String

DW Define Word

DWL Define Word With Little Endian Ordering

ELSE Alternative Result of IF Directive

ENDIF End Conditional Assembly

ENDM End Macro

EQU Equate Label to Variable Value

EXPORT Export

IF Start Conditional Assembly

INCLUDE Include Source File

.LITERAL, .ENDLITERAL Prevent Code Compression of Data

MACRO Start Macro Definition

ORG Area Origin

.SECTION, .ENDSECTION Section for Dead-Code Elimination

Suspend - OR F,0
Resume - ADD SP,0

Suspend and Resume Code Compressor



76 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.1 Area AREA

Defines where code or data is located in Flash or RAM by the Linker. The Linker gathers all areas
with the same name together from the source files, and either concatenates or overlays them,
depending on the attributes specified. All areas with the same name must have the same attributes,
even if they are used in different modules.

The following is a complete list of valid key words that can be used with the AREA directive:

RAM – Specifies that data is stored in RAM. Only used for variable storage. Commonly used with
the BLK directive. Note that RAM AREAs are always overlay AREAs.

ROM – Specifies that code or data is stored in Flash.

ABS – Absolute, i.e., non-relocatable, location for code or data specified by the ORG directive.
Default value of AREAs for type ABS or REL directives is not specified.

REL – Allows the Linker to relocate the code or data. 

CON – Specifies that sequential AREAs follow each other in memory. Each AREA is allocated its
own memory. The total size of the AREA directive is the sum of all AREA sizes. Default value of the
AREAs for type CON or OVR directives is not specified.

OVR – Specifies that sequential AREAs start at the same address. This is a union of the AREAs.
The total size of the AREA directive is the size of the largest area.

Directive Arguments

AREA <name> ( < RAM | ROM >, [ ABS | REL ], [ CON | OVR ] )

Example: A code area is defined at address 2000.

AREA MyArea(ROM,ABS,CON)
ORG 2000h

_MyArea_start:



Assembly Language Guide, Document # 38-12004 Rev. *F 77

Assembler Directives

5.1.1 Code Compressor and the AREA Directive

The Code Compressor looks for duplicate code within the “text” Area. The text area is the default
area in which all C code is placed. 

The above diagram shows a scenario that is problematic. Code areas created with the AREA direc-
tive, using a name other than text, are not compressed or fixed up following compression. If Function
Y calls Function B, there is the potential that the location of Function B will be changed by the Code
Compressor. The call or jump generated in the code for Function Y will go to the wrong location.

It is allowable for Function A to call a function in a “non_text” Area. The location for Function B can
change because it is in the text area. Calls and jumps are fixed up in the text area only. Following
code compression, the call location to Function B from Function X in the non_text area will not be
fixed up.

If Sublimation is on, there is another scenario that is problematic. Since Sublimation changes the
UserModules Area, you cannot call routines in this area from a code area created with AREA direc-
tive, using a name other than “text”.

All normal user code that is to be compressed must be in the default text area. If you create code in
other areas (for example, in a bootloader), then it must not call any functions in the text area. How-
ever, it is acceptable for a function in the text area to call functions in other areas. The exception is
the TOP area where the interrupt vectors and the startup code can call functions in the text area.
Addresses within the text area must be not used directly.

If you reference any text area function by address, then it must be done indirectly. Its address must
be put in a word in the area "func_lit." At runtime, you must de-reference the content of this word to
get the correct address of the function. Note that if you are using C to call a function indirectly, the
compiler will take care of all these details for you. The information is useful if you are writing assem-
bly code.

For further details on enabling and using code compression, see:

■ PSoC Designer C Language Compiler Guide

■ PSoC Designer IDE Guide

"text"
Area

"non_text"
Area

Function A

Function B Function YCalls

Not Allowed Function X

Allowed



78 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.2 NULL Terminated ASCII String ASCIZ

Stores a string of characters as ASCII values and appends a terminating NULL (00h) character. The
string must start and end with quotation marks ("").

The string is stored character by character in ASCII HEX format. The backslash character (\) is used
in the string as an escape character. Non-printing characters, such as \n and \r, can be used. A quo-
tation mark (") can be entered into a string using the backslash (\"), a single quote (‘) as (\’), and a
backslash (\) as (\\).

Directive Arguments

ASCIZ < “character string“ >

Example: My"String\ is defined with a terminating NULL character.

MyString:
        ASCIZ "My\"String\\"



Assembly Language Guide, Document # 38-12004 Rev. *F 79

Assembler Directives

5.3 RAM Block in Bytes BLK

Reserves blocks of RAM in bytes. The argument is an expression, specifying the size of the block, in
bytes, to reserve. The AREA directive must be used to ensure the block of bytes will reside in the cor-
rect memory location.

PSoC Designer requires that the AREA bss be used for RAM variables.

Directive Arguments

BLK < size >

Example: A 4-byte variable called MyVariable is allocated.

        AREA bss
MyVariable:
        BLK 4



80 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.4 RAM Block in Words BLKW

Reserves a block of RAM. The amount of RAM reserved is determined by the size argument to the
directive. The units for the size argument is words (16 bits).

PSoC Designer requires that the AREA bss be used for RAM variables.

Directive Arguments

BLKW < size >

Example: A 4-byte variable called MyVariable is allocated.

        AREA bss
MyVariable:
        BLKW 2



Assembly Language Guide, Document # 38-12004 Rev. *F 81

Assembler Directives

5.5 Define Byte DB

Reserves bytes of ROM and assigns the specified values to the reserved bytes. This directive is
useful for creating data tables in ROM.

Arguments may be constants or labels. The length of the source line limits the number of arguments
in a DB directive.

Directive Arguments

DB < value1 > [ , value2, ..., valuen ]

Example: 3 bytes are defined starting at address 3000.

MyNum:  EQU 77h
        ORG 3000h
MyTable:
        DB 55h, 66h, MyNum



82 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.6 Define Floating-point Number DF

Reserves four-byte pairs of ROM and assigns the specified values to each reserved pair. The format
used is the IEEE-754 Single Format stored in big-endian format. This directive is useful for creating
data tables in ROM.

Arguments must be constants. Only the length of the source line limits the number of arguments in a
DF directive.

Directive Arguments

DF < value1 > [ , value2, ..., valuen ]

Example: MyTable:
        DF 1.2345, -1.07e-03f



Assembly Language Guide, Document # 38-12004 Rev. *F 83

Assembler Directives

5.7 Define ASCII String DS

Stores a string of characters as ASCII values. The string must start and end with quotation marks
("").

The string is stored character by character in ASCII HEX format. The backslash character (\) is used
in the string as an escape character. Non-printing characters, such as \n and \r, can be used. A quo-
tation mark (") can be entered into a string using the backslash (\"), a single quote (‘) as (\’), and a
backslash (\) as (\\).

The string is not null terminated. To create a null terminated string; follow the DS directive with a DB
00h or use ASCIZ directive.

Directive Arguments

DS < “character string“ >

Example: My"String\ is defined:

MyString:
        DS "My\"String\\"



84 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.8 Define UNICODE String DSU

Stores a string of characters as UNICODE values with little ENDIAN byte order. The string must start
and end with quotation marks ("").

The string is stored character by character in UNICODE format. Each character in the string is
stored with the low byte followed by the high byte. 

The backslash character (\) is used in the string as an escape character. Non-printing characters,
such as \n and \r, can be used. A quotation mark (") can be entered into a string using the backslash
(\"), a single quote (‘) as (\’), and a backslash (\) as (\\).

Directive Arguments

DSU < “character string“ >

Example: My"String\ is defined with little endian byte order.

MyString:
        DSU "My\"String\\"



Assembly Language Guide, Document # 38-12004 Rev. *F 85

Assembler Directives

5.9 Define Word, Big Endian Ordering DW

Reserves two-byte pairs of ROM and assigns the specified words to each reserved byte. This direc-
tive is useful for creating tables in ROM.

The arguments may be constants or labels. Only the length of the source line limits the number of
arguments in a DW directive.

Directive Arguments

DW < value1 > [ , value2, ..., valuen ]

Example: 6 bytes are defined starting at address 2000.

MyNum:  EQU 3333h
        ORG 2000h
MyTable:
        DW 1111h, 2222h, MyNum



86 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.10 Define Word, Little Endian Ordering DWL

Reserves two-byte pairs of ROM and assigns the specified words to each reserved byte, swapping
the order of the upper and lower bytes.

The arguments may be constants or labels. The length of the source line limits the number of argu-
ments in a DWL directive.

Directive Arguments

DWL < value1 > [ , value2, ..., valuen ]

Example: 6 bytes are defined starting at address 2000.

MyNum:  EQU 6655h
        ORG 2000h
MyTable:
        DWL 2211h, 4433h, MyNum



Assembly Language Guide, Document # 38-12004 Rev. *F 87

Assembler Directives

5.11 Equate Label EQU

Assigns an integer value to a label. The label and operand are required for an EQU directive. The
argument must be a constant or label or “.” (the current PC). Each EQU directive may have only one
argument and, if a label is defined more than once, an assembly error will occur.

To use the same equate in more than one assembly source file, place the equate in an .inc file and
include that file in the referencing source files. Do not export equates from assembly source files, or
the PSoC Designer Linker will resolve the directive in unpredictable ways.

Directive Arguments

EQU < label> EQU < value | address >

Example: BITMASK is equated to 1Fh.

BITMASK: EQU 1Fh



88 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.12 Export EXPORT

Designates that a label is global and can be referenced in another file. Otherwise, the label is not vis-
ible to another file. Another way to export a label is to end the label definition with two colons (::)
instead of one.

Directive Arguments

EXPORT EXPORT < label >

Example: Export MyVariable
AREA bss

MyVariable:
        BLK 1



Assembly Language Guide, Document # 38-12004 Rev. *F 89

Assembler Directives

5.13 Conditional Source IF, ELSE, ENDIF

All source lines between the IF and ENDIF (or IF and ELSE) directives are assembled if the condi-
tion is true. These statements can be nested.

ELSE delineates a “not true” action for a previous IF directive.

ENDIF finishes a section of conditional assembly that began with an IF directive.

Directive Arguments

IF
ELSE
ENDIF

value

Example: Sections of the source code are conditional.

Cond1:  EQU 1
Cond2:  EQU 0
        ORG 1000h
        IF (Cond1)
        ADD A, 33h
        IF (Cond2)
        ADD A, FFh
        ENDIF ;Cond1
        NOP ;Cond1
        ELSE
        MOV A, FFh
        ENDIF ;Cond2
// The example creates the following code
        ADD A, 33h
        NOP



90 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.14 Include Source File INCLUDE

Used to add additional source files to the file being assembled. When an INCLUDE directive is
encountered, the Assembler reads in the specified source file until either another INCLUDE directive
is encountered or the end of file is reached. If additional INCLUDE directives are encountered, addi-
tional source files are read in. When an end of file is encountered, the Assembler resumes reading
the previous file. 

Specify the full (or relative) path to the file if the source file does not reside in the current directory. 

Directive Arguments

INCLUDE < file name >

Example: Three files are included into the source code.

INCLUDE "MyInclude1.inc"
INCLUDE "MyIncludeFiles\MyInclude2.inc"
INCLUDE "C:\MyGlobalIncludeFiles\MyInclude3.inc"



Assembly Language Guide, Document # 38-12004 Rev. *F 91

Assembler Directives

5.15 Prevent Code Compression of Data .LITERAL, .ENDLITERAL

Used to avoid code compression of the data defined between the .LITERAL and .ENDLITERAL
directives. For the code compressor to function, all data defined in ROM with the ASCIZ, DB, DS,
DSU, DW, or DWL directives must use this directive. The .LITERAL directive must be followed by an
exported global label. The .ENDLITERAL directive resumes code compression.

Directive Arguments

.LITERAL
.ENDLITERAL

< none >

Example: Code compression is suspended for the data table.

Export DataTable
.LITERAL
DataTable:
DB 01h, 02h, 03h
.ENDLITERAL 



92 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.16 Macro Definition MACRO, ENDM

Used to specify the start and end of a macro definition. The lines of code defined between a MACRO
directive and an ENDM directive are not directly assembled into the program. Instead, it forms a
macro that can later be substituted into the code by a macro call. The following MACRO directive is
used to call the macro as well as a list of parameters. Each time a parameter is used in the macro
body of a macro call, it will be replaced by the corresponding value from the macro call.

Any assembly statement is allowed in a macro body except for another macro statement. Within a
macro body, the expression @digit, where digit is between 0 and 9, is replaced by the correspond-
ing macro argument when the macro is invoked. You cannot define a macro name that conflicts with
an instruction mnemonic or an assembly directive.

Directive Arguments

MACRO
ENDM

< name >< arguments >

Example: A MACRO is defined and used in the source code. 

        MACRO MyMacro
        ADD A, 42h
        MOV X, 33h
        ENDM
// The Macro instructions are expanded at address 2400
        ORG 2400h
        MyMacro



Assembly Language Guide, Document # 38-12004 Rev. *F 93

Assembler Directives

5.17 Area Origin ORG

Allows the programmer to set the value of the Program/Data Counter during assembly. This is most
often used to set the start of a table in conjunction with the define directives DB, DS, and DW. The ORG
directive can only be used in areas with the ABS mode.

An operand is required for an ORG directive and may be an integer constant, a label, or “.” (the cur-
rent PC). The Assembler does not keep track of areas previously defined and will not flag overlap-
ping areas in a single source file.

Directive Arguments

ORG < address >

Example: The bytes defined after the ORG directive are at address 1000.

        ORG 1000h
        DB 55h, 66h, 77h



94 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives

5.18 Section for Dead-Code Elimination .SECTION, .ENDSECTION

Allows the removal of code specified between the .SECTION and .ENDSECTION directives. The
.SECTION directive must be followed by an exported global label. If there is no call to the global
label, the code will be eliminated and call offsets will be adjusted appropriately. The .ENDSECTION
directive ends the dead-code section. Note that use of this directive is not limited to removing dead
code. 

PSoC Designer takes care of dead code. Check the “Enable Elimination of un-used User Modules
(area) APIs” field under the Project > Settings > Compiler tab. If you check this field upon a build, the
system will go in and remove all dead code from the APIs in an effort to free up space.

Directive Arguments

.SECTION
.ENDSECTION

< none >

Example: The section of code is designated as possible dead code.

Export Counter8_1_WriteCompareValue
.SECTION
Counter8_1_WriteCompareValue:

MOV   reg[Counter8_1_COMPARE_REG], A
RET

.ENDSECTION



Assembly Language Guide, Document # 38-12004 Rev. *F 95

Assembler Directives

5.19 Suspend Code Compressor OR F,0

5.20 Resume Code Compressor ADD SP,0
Used to prevent code compression of the code between the OR F,0 and ADD SP,0 instructions.
The code compressor may need to be suspended for timing loops and jump tables. If the JACC
instruction is used to access fixed offset boundaries in a jump table, any LJMP and/or LCALL instruc-
tion entries in the table may be optimized to relative jumps or calls, changing the proper offset value
for the JACC. A RET or RETI instruction will resume code compression if it is encountered before an
ADD SP,0 instruction. These instructions are defined as the macros Suspend_CodeCompressor
and Resume_CodeCompressor in the file m8c.inc.

Directive Arguments

OR F,0
ADD SP,0

< none >

Example: Code compression is suspended for the jump table.

OR F,0
MOV A, [State]
JACC StateTable
StateTable:
LJMP State1
LJMP State2
LJMP State3
ADD SP,0



96 Assembly Language Guide, Document # 38-12004 Rev. *F

Assembler Directives



Assembly Language Guide, Document # 38-12004 Rev. *F 97

6. Builds and Error Messages

This chapter briefly describes the PSoC Designer assemble and build process, linker operations,
and errors you might encounter with your code.

6.1 Assemble and Build
Once you have added and modified assembly language source files, you must assemble the files
and build the project. This is done so PSoC Designer can generate a HEX file to be used to down-
load to the ICE and debug the PSoC program. Each time you assemble files or build the project, the
Output Status window is cleared and the current status is entered as the process occurs. 

When building is complete, you will see the number of errors. Zero errors signifies that the assem-
blage or build was successful. One or more errors indicate problems with one or more files. For more
information on the PSoC Designer Output Status Window refer to the PSoC Designer IDE Guide.

6.2 Linker Operations
The main purpose of the Linker is to combine multiple object files into a single output file, suitable to
be downloaded to the In-Circuit Emulator for debugging the code and programming the device. Link-
ing takes place in PSoC Designer when a project build is executed. The linker can also take input
from a library which is basically a file containing multiple object files. In producing the output file, the
Linker resolves any references between the input files. In some detail, the linking steps involve:

1. Making the startup file (boot.asm) the first file to be linked. The startup file initializes the execution 
environment for the C program to run.

2. Appending any libraries that you explicitly request (or in most cases, as are requested by the 
IDE) to the list of files to be linked. Library modules that are directly or indirectly referenced will be 
linked. All user-specified object files (e.g., your program files) are linked.

3. Scanning the object files to find unresolved references. The linker marks the object file (possibly 
in the library) that satisfies the references and adds it to its list of unresolved references. It 
repeats the process until there are no outstanding unresolved references.

4. Combining all marked object files into an output file, and generating map and listing files as 
needed.

For additional information about the Linker and specifying Linker settings, refer to the PSoC
Designer IDE Guide.

To compile the source files for the current project, click the Compile/Assemble
icon in the toolbar.

To build the current project, click the Build icon in the toolbar.



98 Assembly Language Guide, Document # 38-12004 Rev. *F

Builds and Error Messages

6.3 Code Compressor and Dead-Code Elimination Error Messages

Problem – 
!X The compiler has failed an internal consistency check. This may be due 
to incorrect input or an internal error. Please report the information 
target == 0 || new_target at ..\optm8c.c(340) to "Cypress" at 
www.cypress.com/support.

Designer\tools\make: *** [output/drc_test.rom] Error 1

Note To obtain support go to http://www.cypress.com/support/login.cfm or www.cypress.com and
click on Technical and Support KnowledgeBase at the bottom of the page.

Possible Causes –

1. The label in a .LITERAL or .SECTION segment of code has not been made global using the 
EXPORT directive or a double colon.

2. A .LITERAL segment has only a label and no defined data.

a. .SECTION was not followed by a label.

b. .LITERAL was not followed by a label.

c. .ENDSECTION has no matching .SECTION.

d. .ENDLITERAL has no matching .LITERAL.

e. .SECTION has no .ENDSECTION.

f. Unmatched .LITERAL directive.

g. Directive creating data may not be compatible with Code Compression and other advanced 
technologies. 

3. Data defined in ROM does not have the .LITERAL and .ENDLITERAL directives.

http://www.cypress.com/support/login.cfm
http://www.cypress.com


Assembly Language Guide, Document # 38-12004 Rev. *F 99

 A. Reference Tables Appendix

The tables in this appendix are intended to serve as a quick reference to the M8C assembler direc-
tives. The tables are also found in the body of this guide. For detailed information on the instruction
set and the assembler directives, refer to the Instruction Set Summary on page 14 and the Assem-
bler Directives chapter on page 75.

A.1 Assembly Syntax Expressions

A.2 Operand Constant Formats.

Table A-1.  Assembly Syntax Expressions

Precedence Expression Symbol Form
1 Bitwise Complement ~ (~a)
2 Multiplication/Division/Modulo *, /, % (a*b), (a/b), (a%b)
3 Addition / Subtraction +, - (a+b), (a-b)
4 Bitwise AND & (a&b)
5 Bitwise XOR ^ (a^b)
6 Bitwise OR | (a|b)
7 High Byte of an Address > (>a)
8 Low Byte of an Address < (<a)

Table A-2.  Constants Formats

Radix Name Formats Example

127 ASCII Character ‘J’
mov A, ‘J’ ;character constant
mov A, ‘\’’ ;use “\” to escape “‘”
mov A, ‘\\’ ;use “\” to escape “\”

16 Hexadecimal
0x4A
4Ah
$4A

mov A, 0x4A ;hex--”0x” prefix
mov A, 4Ah ;hex--append “h”
mov A, $4A ;hex--”$” prefix

10 Decimal 74 mov A, 74 ;decimal--no prefix

8 Octal 0112 mov A, 0112 ;octal--zero prefix

2 Binary
0b01001010
%01001010

mov A, 0b01001010 ;bin--“0b” prefix
mov A, %01001010 ;bin--”%” prefix



100 Assembly Language Guide, Document # 38-12004 Rev. *F

A.3 Assembler Directives Summary

Table A-3.  Assembler Directives Summary

Symbol Directive
AREA Area
ASCIZ NULL Terminated ASCII String
BLK RAM Byte Block
BLKW RAM Word Block
DB Define Byte
DS Define ASCII String
DSU Define UNICODE String
DW Define Word
DWL Define Word With Little Endian Ordering
ELSE Alternative Result of IF Directive
ENDIF End Conditional Assembly
ENDM End Macro
EQU Equate Label to Variable Value
EXPORT Export
IF Start Conditional Assembly
INCLUDE Include Source File
.LITERAL, .ENDLITERAL Prevent Code Compression of Data
MACRO Start Macro Definition
ORG Area Origin
.SECTION, .ENDSECTION Section for Dead-Code Elimination
Suspend - OR F,0
Resume - ADD SP,0

Suspend and Resume Code Compressor



Assembly Language Guide, Document # 38-12004 Rev. *F 101

A.4 ASCII Code Table

Table A-4.  ASCII Code Table

Dec HEX Oct Char Dec HEX Oct Char Dec HEX Oct Char Dec HEX Oct Char
0 00 000 NULL 32 20 040 space 64 40 100 @ 96 60 140 ‘

1 01 001 SOH 33 21 041 ! 65 41 101 A 97 61 141 a

2 02 002 STX 34 22 042 “ 66 42 102 B 98 62 142 b

3 03 003 ETX 35 23 043 # 67 43 103 C 99 63 143 c

4 04 004 EOT 36 24 044 $ 68 44 104 D 100 64 144 d
5 05 005 ENQ 37 25 045 % 69 45 105 E 101 65 145 e

6 06 006 ACK 38 26 046 & 70 46 106 F 102 66 146 f

7 07 007 BEL 39 27 047 ‘ 71 47 107 G 103 67 147 g

8 08 010 BS 40 28 050 ( 72 48 110 H 104 68 150 h

9 09 011 HT 41 29 051 ) 73 49 111 I 105 69 151 i

10 0A 012 LF 42 2A 052 * 74 4A 112 J 106 6A 152 j
11 0B 013 VT 43 2B 053 + 75 4B 113 K 107 6B 153 k

12 0C 014 FF 44 2C 054 , 76 4C 114 L 108 6C 154 l

13 0D 015 CR 45 2D 055 - 77 4D 115 M 109 6D 155 m

14 0E 016 SO 46 2E 056 . 78 4E 116 N 110 6E 156 n

15 0F 017 SI 47 2F 057 / 79 4F 117 O 111 6F 157 o

16 10 020 DLE 48 30 060 0 80 50 120 P 112 70 160 p
17 11 021 DC1 49 31 061 1 81 51 121 Q 113 71 161 q

18 12 022 DC2 50 32 062 2 82 52 122 R 114 72 162 r

19 13 023 DC3 51 33 063 3 83 53 123 S 115 73 163 s

20 14 024 DC4 52 34 064 4 84 54 124 T 116 74 164 t

21 15 025 NAK 53 35 065 5 85 55 125 U 117 75 165 u

22 16 026 SYN 54 36 066 6 86 56 126 V 118 76 166 v
23 17 027 ETB 55 37 067 7 87 57 127 W 119 77 167 w

24 18 030 CAN 56 38 070 8 88 58 130 X 120 78 170 x

25 19 031 EM 57 39 071 9 89 59 131 Y 121 79 171 y

26 1A 032 SUB 58 3A 072 : 90 5A 132 Z 122 7A 172 z

27 1B 033 ESC 59 3B 073 ; 91 5B 133 [ 123 7B 173 {

28 1C 034 FS 60 3C 074 < 92 5C 134 \ 124 7C 174 |
29 1D 035 GS 61 3D 075 = 93 5D 135 ] 125 7D 175 }

30 1E 036 RS 62 3E 076 > 94 5E 136 ^ 126 7E 176 ~

31 1F 037 US 63 3F 077 ? 95 5F 137 _ 127 7F 177 DEL



102 Assembly Language Guide, Document # 38-12004 Rev. *F

A.5 Instruction Set Summary 

 

Table A-5.  Instruction Set Summary Sorted Numerically by Opcode
O

p
co

d
e 

H
E

X

C
yc

le
s

B
yt

es Instruction For-
mat Flags

O
p

co
d

e 
H

E
X

C
yc

le
s

B
yt

es Instruction Format Flags

O
p

co
d

e 
H

E
X

C
yc

le
s

B
yt

es Instruction Format Flags

00 15 1 SSC 2D 8 2 OR [X+expr], A Z 5A 5 2 MOV [expr], X

01 4 2 ADD A, expr C, Z 2E 9 3 OR [expr], expr Z 5B 4 1 MOV A, X Z

02 6 2 ADD A, [expr] C, Z 2F 10 3 OR [X+expr], expr Z 5C 4 1 MOV X, A

03 7 2 ADD A, [X+expr] C, Z 30  9 1 HALT 5D 6 2 MOV A, reg[expr] Z

04 7 2 ADD [expr], A C, Z 31 4 2 XOR A, expr Z 5E 7 2 MOV A, reg[X+expr] Z

05 8 2 ADD [X+expr], A C, Z 32 6 2 XOR A, [expr] Z 5F 10 3 MOV [expr], [expr]

06 9 3 ADD [expr], expr C, Z 33 7 2 XOR A, [X+expr] Z 60 5 2 MOV reg[expr], A

07 10 3 ADD [X+expr], expr C, Z 34 7 2 XOR [expr], A Z 61 6 2 MOV reg[X+expr], A

08  4 1 PUSH A 35 8 2 XOR [X+expr], A Z 62 8 3 MOV reg[expr], expr

09 4 2 ADC A, expr C, Z 36 9 3 XOR [expr], expr Z 63 9 3 MOV reg[X+expr], expr

0A 6 2 ADC A, [expr] C, Z 37 10 3 XOR [X+expr], expr Z 64  4 1 ASL A C, Z

0B 7 2 ADC A, [X+expr] C, Z 38  5 2 ADD SP, expr 65  7 2 ASL [expr] C, Z

0C 7 2 ADC [expr], A C, Z 39  5 2 CMP A, expr

if (A=B) Z=1

if (A<B) C=1

66  8 2 ASL [X+expr] C, Z

0D 8 2 ADC [X+expr], A C, Z 3A  7 2 CMP A, [expr] 67  4 1 ASR A C, Z

0E 9 3 ADC [expr], expr C, Z 3B  8 2 CMP A, [X+expr] 68  7 2 ASR [expr] C, Z

0F 10 3 ADC [X+expr], expr C, Z 3C  8 3 CMP [expr], expr 69  8 2 ASR [X+expr] C, Z

10  4 1 PUSH X 3D  9 3 CMP [X+expr], expr 6A  4 1 RLC A C, Z

11  4 2 SUB A, expr C, Z 3E 10 2 MVI A, [ [expr]++ ] Z 6B  7 2 RLC [expr] C, Z

12  6 2 SUB A, [expr] C, Z 3F 10 2 MVI [ [expr]++ ], A 6C  8 2 RLC [X+expr] C, Z

13  7 2 SUB A, [X+expr] C, Z 40 4 1 NOP 6D  4 1 RRC A C, Z

14  7 2 SUB [expr], A C, Z 41  9 3 AND reg[expr], expr Z 6E  7 2 RRC [expr] C, Z

15  8 2 SUB [X+expr], A C, Z 42 10 3 AND reg[X+expr], expr Z 6F  8 2 RRC [X+expr] C, Z

16  9 3 SUB [expr], expr C, Z 43 9 3 OR reg[expr], expr Z 70  4 2 AND F, expr C, Z

17 10 3 SUB [X+expr], expr C, Z 44 10 3 OR reg[X+expr], expr Z 71 4 2 OR F, expr C, Z

18  5 1 POP A Z 45  9 3 XOR reg[expr], expr Z 72  4 2 XOR F, expr C, Z

19  4 2 SBB A, expr C, Z 46 10 3 XOR reg[X+expr], expr Z 73  4 1 CPL A Z

1A  6 2 SBB A, [expr] C, Z 47  8 3 TST [expr], expr Z 74  4 1 INC A C, Z

1B  7 2 SBB A, [X+expr] C, Z 48  9 3 TST [X+expr], expr Z 75  4 1 INC X C, Z

1C  7 2 SBB [expr], A C, Z 49  9 3 TST reg[expr], expr Z 76  7 2 INC [expr] C, Z

1D  8 2 SBB [X+expr], A C, Z 4A 10 3 TST reg[X+expr], expr Z 77  8 2 INC [X+expr] C, Z

1E  9 3 SBB [expr], expr C, Z 4B  5 1 SWAP A, X Z 78  4 1 DEC A C, Z

1F 10 3 SBB [X+expr], expr C, Z 4C  7 2 SWAP A, [expr] Z 79  4 1 DEC X C, Z

20  5 1 POP X 4D  7 2 SWAP X, [expr] 7A  7 2 DEC [expr] C, Z

21  4 2 AND A, expr Z 4E  5 1 SWAP A, SP Z 7B  8 2 DEC [X+expr] C, Z

22  6 2 AND A, [expr] Z 4F 4 1 MOV X, SP 7C 13 3 LCALL

23  7 2 AND A, [X+expr] Z 50 4 2 MOV A, expr Z 7D 7 3 LJMP

24  7 2 AND [expr], A Z 51 5 2 MOV A, [expr] Z 7E 10 1 RETI C, Z

25  8 2 AND [X+expr], A Z 52 6 2 MOV A, [X+expr] Z 7F  8 1 RET

26  9 3 AND [expr], expr Z 53 5 2 MOV [expr], A 8x  5 2 JMP

27 10 3 AND [X+expr], expr Z 54 6 2 MOV [X+expr], A 9x 11 2 CALL

28 11 1 ROMX Z 55 8 3 MOV [expr], expr Ax 5 2 JZ

29 4 2 OR A, expr Z 56 9 3 MOV [X+expr], expr Bx 5 2 JNZ

2A 6 2 OR A, [expr] Z 57 4 2 MOV X, expr Cx 5 2 JC

2B 7 2 OR A, [X+expr] Z 58 6 2 MOV X, [expr] Dx 5 2 JNC

2C 7 2 OR [expr], A Z 59 7 2 MOV X, [X+expr] Ex 7 2 JACC

Note 1  Interrupt acknowledge to Interrupt Vector table = 13 cycles. Fx 13 2 INDEX Z

Note 2  The number of cycles required by an instruction is increased by one for instructions that 
span 256 byte page boundaries in the Flash memory space.



Assembly Language Guide, Document # 38-12004 Rev. *F 103

Table A-6.  Instruction Set Summary Sorted Alphabetically by Mnemonic

O
p

co
d

e 
H

E
X

C
yc

le
s

B
yt

es Instruction Format Flags

O
p

co
d

e 
H

E
X

C
yc

le
s

B
yt

es Instruction Format Flags

O
p

co
d

e 
H

E
X

C
yc

le
s

B
yt

es Instruction Format Flags

09 4 2 ADC A, expr C, Z 76   7 2 INC [expr] C, Z 20  5 1 POP X

0A 6 2 ADC A, [expr] C, Z 77  8 2 INC [X+expr] C, Z 18  5 1 POP A Z
0B 7 2 ADC A, [X+expr] C, Z Fx 13 2 INDEX Z 10  4 1 PUSH X
0C 7 2 ADC [expr], A C, Z Ex 7 2 JACC 08  4 1 PUSH A

0D 8 2 ADC [X+expr], A C, Z Cx 5 2 JC 7E 10 1 RETI C, Z
0E 9 3 ADC [expr], expr C, Z 8x  5 2 JMP 7F  8 1 RET
0F 10 3 ADC [X+expr], expr C, Z Dx 5 2 JNC 6A  4 1 RLC A C, Z

01 4 2 ADD A, expr C, Z Bx 5 2 JNZ 6B  7 2 RLC [expr] C, Z
02 6 2 ADD A, [expr] C, Z Ax 5 2 JZ 6C  8 2 RLC [X+expr] C, Z
03 7 2 ADD A, [X+expr] C, Z 7C 13 3 LCALL 28 11 1 ROMX Z

04 7 2 ADD [expr], A C, Z 7D 7 3 LJMP 6D  4 1 RRC A C, Z
05 8 2 ADD [X+expr], A C, Z 4F 4 1 MOV X, SP 6E  7 2 RRC [expr] C, Z

06 9 3 ADD [expr], expr C, Z 50 4 2 MOV A, expr Z 6F  8 2 RRC [X+expr] C, Z
07 10 3 ADD [X+expr], expr C, Z 51 5 2 MOV A, [expr] Z 19  4 2 SBB A, expr C, Z
38  5 2 ADD SP, expr 52 6 2 MOV A, [X+expr] Z 1A  6 2 SBB A, [expr] C, Z

21   4 2 AND A, expr Z 53 5 2 MOV [expr], A 1B  7 2 SBB A, [X+expr] C, Z
22   6 2 AND A, [expr] Z 54 6 2 MOV [X+expr], A 1C  7 2 SBB [expr], A C, Z
23   7 2 AND A, [X+expr] Z 55 8 3 MOV [expr], expr 1D  8 2 SBB [X+expr], A C, Z

24   7 2 AND [expr], A Z 56 9 3 MOV [X+expr], expr 1E  9 3 SBB [expr], expr C, Z
25   8 2 AND [X+expr], A Z 57 4 2 MOV X, expr 1F 10 3 SBB [X+expr], expr C, Z
26   9 3 AND [expr], expr Z 58 6 2 MOV X, [expr] 00 15 1 SSC

27 10 3 AND [X+expr], expr Z 59 7 2 MOV X, [X+expr] 11  4 2 SUB A, expr C, Z
70   4 2 AND F, expr C, Z 5A 5 2 MOV [expr], X 12  6 2 SUB A, [expr] C, Z
41   9 3 AND reg[expr], expr Z 5B 4 1 MOV A, X Z 13  7 2 SUB A, [X+expr] C, Z

42 10 3 AND reg[X+expr], expr Z 5C 4 1 MOV X, A 14  7 2 SUB [expr], A C, Z
64   4 1 ASL A C, Z 5D 6 2 MOV A, reg[expr] Z 15  8 2 SUB [X+expr], A C, Z
65   7 2 ASL [expr] C, Z 5E 7 2 MOV A, reg[X+expr] Z 16  9 3 SUB [expr], expr C, Z

66   8 2 ASL [X+expr] C, Z 5F 10 3 MOV [expr], [expr] 17 10 3 SUB [X+expr], expr C, Z
67   4 1 ASR A C, Z 60 5 2 MOV reg[expr], A 4B  5 1 SWAP A, X Z
68   7 2 ASR [expr] C, Z 61 6 2 MOV reg[X+expr], A 4C  7 2 SWAP A, [expr] Z

69   8 2 ASR [X+expr] C, Z 62 8 3 MOV reg[expr], expr 4D  7 2 SWAP X, [expr]
9x 11 2 CALL 63 9 3 MOV reg[X+expr], expr 4E  5 1 SWAP A, SP Z
39   5 2 CMP A, expr

if (A=B) 
Z=1

if (A<B) 
C=1

3E 10 2 MVI A, [ [expr]++ ] Z 47  8 3 TST [expr], expr Z

3A   7 2 CMP A, [expr] 3F 10 2 MVI [ [expr]++ ], A 48  9 3 TST [X+expr], expr Z
3B   8 2 CMP A, [X+expr] 40 4 1 NOP 49  9 3 TST reg[expr], expr Z
3C   8 3 CMP [expr], expr 29 4 2 OR A, expr Z 4A 10 3 TST reg[X+expr], expr Z

3D   9 3 CMP [X+expr], expr 2A 6 2 OR A, [expr] Z 72  4 2 XOR F, expr C, Z
73   4 1 CPL A Z 2B 7 2 OR A, [X+expr] Z 31 4 2 XOR A, expr Z
78   4 1 DEC A C, Z 2C 7 2 OR [expr], A Z 32 6 2 XOR A, [expr] Z

79   4 1 DEC X C, Z 2D 8 2 OR [X+expr], A Z 33 7 2 XOR A, [X+expr] Z
7A   7 2 DEC [expr] C, Z 2E 9 3 OR [expr], expr Z 34 7 2 XOR [expr], A Z
7B   8 2 DEC [X+expr] C, Z 2F 10 3 OR [X+expr], expr Z 35 8 2 XOR [X+expr], A Z

30  9 1 HALT 43 9 3 OR reg[expr], expr Z 36 9 3 XOR [expr], expr Z
74   4 1 INC A C, Z 44 10 3 OR reg[X+expr], expr Z 37 10 3 XOR [X+expr], expr Z
75   4 1 INC X C, Z 71 4 2 OR F, expr C, Z 45  9 3 XOR reg[expr], expr Z

Note 1  Interrupt acknowledge to Interrupt Vector table = 13 cycles. 46 10 3 XOR reg[X+expr], expr Z
Note 2  The number of cycles required by an instruction is increased by one for instructions 
that span 256 byte page boundaries in the Flash memory space.



104 Assembly Language Guide, Document # 38-12004 Rev. *F



Assembly Language Guide, Document # 38-12004 Rev. *F 105

Index

A
absolute table read instruction 67
acronyms 9
ADD instruction 39
ADD SP,0 directive 95
add with carry instruction 38
add without carry instruction 39
address spaces 12
addressing modes, M8C 18
AND instruction 40
AREA directive 76
area origin directive 93
arithmetic shift left instruction 41
arithmetic shift right instruction 42
ASCII code table 101
ASCIZ directive 78
ASL instruction 41
ASR instruction 42
assembler

comments 29
directives 30, 75
errors and warnings 97
Intel HEX file format 31
labels 26
listing file format 30
map file format 30
mnemonics 27
operands 28
ROM file format 30
source file format 25

assembly syntax expressions 99

B
bitwise AND instruction 40
bitwise OR instruction 61
bitwise XOR instruction 74
BLK directive 79
BLKW directive 80
build current project 97

C
call function instruction 43
CALL instruction 43
CMP instruction 44
compiling file into library module 33

compiling source files 97
complement accumulator instruction 45
components of assembly source file 25
compressor and dead code error message 

elimination 98
conditional source directive 89
constants format table 99
conventions 8
CPL instruction 45
CPU core

addressing modes 18
instruction formats 16
instruction set summary 14–15, 102

D
DB directive 81
debugging 97
DEC instruction 46
decrement instruction 46
define ASCII string directive 83
define byte directive 81
define floating-point number directive 82
define UNICODE string directive 84
define word, big endian ordering directive 85
define word, little endian ordering directive 86
destination instructions

direct 20
direct source direct 22
direct source immediate 21
indexed 20
indexed source immediate 21
indirect post increment 23

DF directive 82
directives summary 75, 100
documentation

acronyms 9
conventions 8
overview 7
revisions 109

DS directive 83
DSU directive 84
DW directive 85
DWL directive 86



106 Assembly Language Guide, Document # 38-12004 Rev. *F

Index

E
elimination of compressor and dead code error 

messages 98
ELSE directive 89
ENDIF directive 89
ENDLITERAL directive 91
ENDM directive 92
ENDSECTION directive 94
EQU directive 87
equate label directive 87
errors 97

G
global labels 27

H
HALT instruction 47
help, getting 8, 97
history of revisions 109

I
IF directive 89
INC instruction 48
INCLUDE directive 90
include source file directive 90
increment instruction 48
INDEX instruction 49
instruction formats

1-byte instructions 16
2-byte instructions 16
3-byte instructions 17

instruction set summary 14–15, 102
instruction set, M8C 37
Intel HEX file format 31
internal registers

accumulator 11
flags 11
index 11
program counter 11
restoring 33
stack pointer 11

introduction 7

J
JACC instruction 50
JC instruction 51
JMP instruction 52
JNC instruction 53
JNZ instruction 54
jump accumulator instruction 50
jump if carry 51
jump if no carry instruction 53
jump if not zero instruction 54

jump if zero instruction 55
jump instruction 52
JZ instruction 55

L
LCALL instruction 56
library module, compiling file 33
linker

operations 97
listing file format 30
LITERAL directive 91
LJMP instruction 57
local labels 26
long call instruction 56
long jump instruction 57

M
M8C microprocessor 11

address spaces 12
addressing modes 18
instruction formats 16
instruction set 37
instructions set summary 14
internal registers 11

macro definition directive 92
MACRO directive 92
map file format 30
mnemonics 27
MOV instruction 58
move indirect, post-increment to memory 

instruction 59
move instruction 58
MVI instruction 59

N
no operation instruction 60
non-destructive compare instruction 44
NOP instruction 60
NULL terminated ASCII string directive 78

O
operands

constants 28
constants format table 99
dot operator 28
expressions 29
labels 28
RAM 29
registers 29

OR F,0 directive 95
OR instruction 61
ORG directive 93
overview of chapters 7



Assembly Language Guide, Document # 38-12004 Rev. *F 107

Index

P
POP instruction 62
pop stack into register instruction 62
prevent code compression of data 91
product

support 8
upgrades 8

PUSH instruction 63
push register onto stack instruction 63

R
RAM block in bytes directive 79
RAM block in words directive 80
relative table read instruction 49
restoring internal registers 33
resume code compressor directive 95
RET instruction 64
RETI instruction 65
return from interrupt instruction 65
return instruction 64
re-usable local labels 27
revision history 109
RLC instruction 66
ROM file format 30
ROMX instruction 67
rotate left through carry instruction 66
rotate right through carry instruction 68
RRC instruction 68

S
SBB instruction 69
SECTION directive 94
section for dead-code elimination directive 94
source file components

comments 29
directives 30
labels 26
mnemonics 27
operands 28

source file format 25
source instructions

direct 19
immediate 18
indexed 19
indirect post increment 22

SSC instruction 72
SUB instruction 70
subtract with borrow instruction 69
subtract without borrow instruction 70
support 8
suspend code compressor directive 95
SWAP instruction 71
syntax expressions 99
system supervisor call instruction 72

T
technical support 8
test for mask instruction 73
TST instruction 73

U
upgrades 8

W
warnings 97

X
XOR instruction 74



108 Assembly Language Guide, Document # 38-12004 Rev. *F

Index



Assembly Language Guide, Document # 38-12004 Rev. *F 109

Revision History

Document Revision History

Document Title: PSoC Designer Assembly Language Guide

Document #r: 38-12004

Revision ECN # Issue Date Origin of 
Change Description of Change

** 115170 4/23/2002 HMT New document to CY Document Control (Revision **). Revision 2.0 for CMS customers.

*A See ECN HMT Misc. updates received over the past few months including code compression and the AREA direc-
tive, and custom libraries. New directives.

*B See ECN HMT Misc. updates received to improve document and support PSoC Designer v. 4.2 due to new LMM 
device families.

*C See ECN 9/12/2005 SFV New Cypress logo, address, format implemented. Minor fixes made.

*D See ECN 9/30/2005 ARI Added sublimation text to Chapter 5.

*E See ECN 11/28/2005 ARI Made programming corrections to Multi-page Examples 3 and 4 for the MVI instruction per email.
Took out CMS URL path and added the Cypress path for reporting errors. 

*F See ECN 04/21/2006 SFV Added the Define Floating-point Number (DF) to the Assembler Directives chapter.



110 Assembly Language Guide, Document # 38-12004 Rev. *F

Revision History


	Assembly Language Guide
	Contents
	1. Introduction
	1.1 Chapter Overviews
	1.2 Support
	1.2.1 Technical Support Systems
	1.2.2 Product Upgrades

	1.3 Documentation Conventions
	1.3.1 Acronyms


	2. M8C Microprocessor
	2.1 Internal Registers
	2.2 Address Spaces
	2.3 Instruction Set Summary
	2.4 Instruction Formats
	2.4.1 One-Byte Instruction
	2.4.2 Two-Byte Instructions
	2.4.3 Three-Byte Instructions

	2.5 Addressing Modes
	2.5.1 Source Immediate
	2.5.2 Source Direct
	2.5.3 Source Indexed
	2.5.4 Destination Direct
	2.5.5 Destination Indexed
	2.5.6 Destination Direct Source Immediate
	2.5.7 Destination Indexed Source Immediate
	2.5.8 Destination Direct Source Direct
	2.5.9 Source Indirect Post Increment
	2.5.10 Destination Indirect Post Increment


	3. PSoC Designer Assembler
	3.1 Source File Format
	3.1.1 Labels
	3.1.2 Mnemonics
	3.1.3 Operands
	3.1.4 Comments
	3.1.5 Directives

	3.2 Listing File Format
	3.3 Map File Format
	3.4 ROM File Format
	3.5 Intel® HEX File Format
	3.6 Convention for Restoring Internal Registers
	3.7 Compiling a File into a Library Module

	4. M8C Instruction Set
	4.1 Add with Carry ADC
	4.2 Add without Carry ADD
	4.3 Bitwise AND AND
	4.4 Arithmetic Shift Left ASL
	4.5 Arithmetic Shift Right ASR
	4.6 Call Function CALL
	4.7 Non-Destructive Compare CMP
	4.8 Complement Accumulator CPL
	4.9 Decrement DEC
	4.10 Halt HALT
	4.11 Increment INC
	4.12 Relative Table Read INDEX
	4.13 Jump Accumulator JACC
	4.14 Jump if Carry JC
	4.15 Jump JMP
	4.16 Jump if No Carry JNC
	4.17 Jump if Not Zero JNZ
	4.18 Jump if Zero JZ
	4.19 Long Call LCALL
	4.20 Long Jump LJMP
	4.21 Move MOV
	4.22 Move Indirect, Post-Increment to Memory MVI
	4.23 No Operation NOP
	4.24 Bitwise OR OR
	4.25 Pop Stack into Register POP
	4.26 Push Register onto Stack PUSH
	4.27 Return RET
	4.28 Return from Interrupt RETI
	4.29 Rotate Left through Carry RLC
	4.30 Absolute Table Read ROMX
	4.31 Rotate Right through Carry RRC
	4.32 Subtract with Borrow SBB
	4.33 Subtract without Borrow SUB
	4.34 Swap SWAP
	4.35 System Supervisor Call SSC
	4.36 Test for Mask TST
	4.37 Bitwise XOR XOR

	5. Assembler Directives
	5.1 Area AREA
	5.1.1 Code Compressor and the AREA Directive

	5.2 NULL Terminated ASCII String ASCIZ
	5.3 RAM Block in Bytes BLK
	5.4 RAM Block in Words BLKW
	5.5 Define Byte DB
	5.6 Define Floating-point Number DF
	5.7 Define ASCII String DS
	5.8 Define UNICODE String DSU
	5.9 Define Word, Big Endian Ordering DW
	5.10 Define Word, Little Endian Ordering DWL
	5.11 Equate Label EQU
	5.12 Export EXPORT
	5.13 Conditional Source IF, ELSE, ENDIF
	5.14 Include Source File INCLUDE
	5.15 Prevent Code Compression of Data .LITERAL, .ENDLITERAL
	5.16 Macro Definition MACRO, ENDM
	5.17 Area Origin ORG
	5.18 Section for Dead-Code Elimination .SECTION, .ENDSECTION
	5.19 Suspend Code Compressor OR F,0
	5.20 Resume Code Compressor ADD SP,0

	6. Builds and Error Messages
	6.1 Assemble and Build
	6.2 Linker Operations
	6.3 Code Compressor and Dead-Code Elimination Error Messages

	A. Reference Tables Appendix
	A.1 Assembly Syntax Expressions
	A.2 Operand Constant Formats.
	A.3 Assembler Directives Summary
	A.4 ASCII Code Table
	A.5 Instruction Set Summary

	Index
	Revision History


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


